• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Parábola

Parábola

Mensagempor Claudin » Qui Jul 05, 2012 19:52

Determine e identifique o lugar geométrico dos pontos equidistantes da reta y-7=0 e do ponto (3,2) e determine o vértice e a equação do eixo.

Gostaria de saber como iniciar esse exercício, em que tenho uma reta e um ponto.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parábola

Mensagempor Russman » Qui Jul 05, 2012 22:44

SUponha qe esse ponto é P=(a,b). Calcule a distancia do mesmo até o ponto e do mesmo até a reta. Em seguida, iguale as duas. Veja o que você obtem!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Parábola

Mensagempor Claudin » Sex Jul 06, 2012 11:44

A distancia do ponto a reta deu

\frac{5\sqrt[]{13}}{13}
e depois o que fazer
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parábola

Mensagempor Russman » Sex Jul 06, 2012 16:48

Russman escreveu:SUponha qe esse ponto é P=(a,b). Calcule a distancia do mesmo até o ponto e do mesmo até a reta. Em seguida, iguale as duas. Veja o que você obtem!


Distancia de (3,2) a P(x,y):

d_{1}^{2} = (x-3)^{2} + (y-2)^{2}

Distância entre a reta y-7=0 e P(x,y):

d_{2}=\frac{\left | y-7 \right |}{\left | 1 \right |}=\left | y-7 \right | \Rightarrow d_{2}^{2}=\left (y-7  \right )^{2}.

Agora, como d_{1} = d_{2}, então d_{1}^{2} = d_{2}^{2} e , logo,

(x-3)^{2} + (y-2)^{2} = \left (y-7  \right )^{2}.

Agora desenvolva, estude a função e determine o lugar geométrico, isto é, a superfície plana tal que satisfaz a condição do problema.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.