por bmachado » Sáb Jun 23, 2012 17:09
Considere um cubo de aresta igual a 1 cm. Sejam ABCD e A’B’C’D’ duas faces opostas desse cubo. Podemos obter uma pirâmide tomando o quadrado ABCD como base e A’ como vértice. A área lateral dessa pirâmide mede: Resposta (1 + V2) Obrigado por colaborar c minha preparacao
-
bmachado
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Qua Fev 29, 2012 00:28
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: EF
- Andamento: formado
por MarceloFantini » Dom Jun 24, 2012 03:57
O que você tentou?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por bmachado » Dom Jun 24, 2012 12:11
MarceloFantini escreveu:O que você tentou?
Bom dia, tentei de varias formas, a maiS legitma acreDito Ser;
H= altura da piramide= 1
s= semi reta Da baSe da altura ate a aresta vale 1/2
Por pitagoraS encontro q a h altura da face lateral vale V5/2, logo Area lateral=(Ab . h)/2=V5/4 X 4 q sao as 4 faces, encontra-se V5!?
-
bmachado
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Qua Fev 29, 2012 00:28
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: EF
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- área lateral piramide
por slade » Dom Out 13, 2013 15:15
- 3 Respostas
- 2260 Exibições
- Última mensagem por young_jedi

Ter Out 15, 2013 21:14
Geometria Analítica
-
- [tronco de cone / área lateral] geometrial espacial
por sandra silva » Ter Ago 26, 2008 22:08
- 2 Respostas
- 7138 Exibições
- Última mensagem por sandra silva

Qua Ago 27, 2008 07:34
Geometria Espacial
-
- limite lateral
por Nina » Qua Out 21, 2009 18:25
- 2 Respostas
- 2976 Exibições
- Última mensagem por MarceloFantini

Ter Set 21, 2010 20:18
Cálculo
-
- [Limite] Lateral
por eli83 » Ter Out 09, 2012 11:15
- 4 Respostas
- 2569 Exibições
- Última mensagem por eli83

Qua Out 10, 2012 00:21
Cálculo: Limites, Derivadas e Integrais
-
- Limite lateral - dúvida em exercício
por gdf262 » Seg Abr 07, 2014 20:30
- 1 Respostas
- 1627 Exibições
- Última mensagem por Man Utd

Ter Abr 08, 2014 11:56
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.