• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites Fundamentais

Limites Fundamentais

Mensagempor Allysom » Sáb Jun 23, 2012 17:39

Bom galera, eu estou com dificuldades na resolução desses limites. E peguei todas as explicações de meu professor, mais mesmo assim continua vago para mim .
a)\lim_{x\rightarrow0}\frac{sen 5x}{sen 2x}
Allysom
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mar 14, 2012 04:30
Formação Escolar: GRADUAÇÃO
Área/Curso: si
Andamento: cursando

Re: Limites Fundamentais

Mensagempor Russman » Sáb Jun 23, 2012 19:23

Você conhece o Teorema de l'Hôpital? Se não, segue o link abaixo.

http://pt.wikipedia.org/wiki/Regra_de_l'H%C3%B4pital

Então, veja que se x=0 voê obtem uma indeterminação do tipo 0/0. Assim, derivando ambos os membros, obtemos

lim (sin(ax))/(sin(bx)) = lim (a.cos(ax))/(b.cos(bx)) .

Agora, quando x=0 temos a/b pois cos(a.0) = cos(0) = 1 e cos(b.0)=cos(0) = 1.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Limites Fundamentais

Mensagempor Allysom » Sáb Jun 23, 2012 19:41

Muito obrigado por responder. Bem eu ainda não aprendi a derivar , mas o meu professor me deu este limite como base para respondelo.
\lim_{x\rightarrow0}\frac{sen x}{ x } =1
Allysom
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mar 14, 2012 04:30
Formação Escolar: GRADUAÇÃO
Área/Curso: si
Andamento: cursando

Re: Limites Fundamentais

Mensagempor Russman » Sáb Jun 23, 2012 19:54

Se você quiser usar este limite então proceda assim:

\lim_{x\rightarrow 0 }\frac{sin(5x)}{sin(2x)} = \lim_{x\rightarrow 0 }\frac{\frac{sin(5x)}{5x}}{\frac{sin(2x)}{2x}}.\frac{2x}{5x}=\frac{2.\lim_{x\rightarrow 0 }\frac{sen(5x)}{5x}}{5.\lim_{x\rightarrow 0 }\frac{sin(2x)}{2x}} = \frac{2}{5}.\frac{1}{1} = \frac{2}{5}

Entende? Se tiver dúvida em algum passo, pergunte.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: