• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites Fundamentais

Limites Fundamentais

Mensagempor Allysom » Sáb Jun 23, 2012 17:39

Bom galera, eu estou com dificuldades na resolução desses limites. E peguei todas as explicações de meu professor, mais mesmo assim continua vago para mim .
a)\lim_{x\rightarrow0}\frac{sen 5x}{sen 2x}
Allysom
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mar 14, 2012 04:30
Formação Escolar: GRADUAÇÃO
Área/Curso: si
Andamento: cursando

Re: Limites Fundamentais

Mensagempor Russman » Sáb Jun 23, 2012 19:23

Você conhece o Teorema de l'Hôpital? Se não, segue o link abaixo.

http://pt.wikipedia.org/wiki/Regra_de_l'H%C3%B4pital

Então, veja que se x=0 voê obtem uma indeterminação do tipo 0/0. Assim, derivando ambos os membros, obtemos

lim (sin(ax))/(sin(bx)) = lim (a.cos(ax))/(b.cos(bx)) .

Agora, quando x=0 temos a/b pois cos(a.0) = cos(0) = 1 e cos(b.0)=cos(0) = 1.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Limites Fundamentais

Mensagempor Allysom » Sáb Jun 23, 2012 19:41

Muito obrigado por responder. Bem eu ainda não aprendi a derivar , mas o meu professor me deu este limite como base para respondelo.
\lim_{x\rightarrow0}\frac{sen x}{ x } =1
Allysom
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mar 14, 2012 04:30
Formação Escolar: GRADUAÇÃO
Área/Curso: si
Andamento: cursando

Re: Limites Fundamentais

Mensagempor Russman » Sáb Jun 23, 2012 19:54

Se você quiser usar este limite então proceda assim:

\lim_{x\rightarrow 0 }\frac{sin(5x)}{sin(2x)} = \lim_{x\rightarrow 0 }\frac{\frac{sin(5x)}{5x}}{\frac{sin(2x)}{2x}}.\frac{2x}{5x}=\frac{2.\lim_{x\rightarrow 0 }\frac{sen(5x)}{5x}}{5.\lim_{x\rightarrow 0 }\frac{sin(2x)}{2x}} = \frac{2}{5}.\frac{1}{1} = \frac{2}{5}

Entende? Se tiver dúvida em algum passo, pergunte.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.