• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites Fundamentais

Limites Fundamentais

Mensagempor Allysom » Sáb Jun 23, 2012 17:39

Bom galera, eu estou com dificuldades na resolução desses limites. E peguei todas as explicações de meu professor, mais mesmo assim continua vago para mim .
a)\lim_{x\rightarrow0}\frac{sen 5x}{sen 2x}
Allysom
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mar 14, 2012 04:30
Formação Escolar: GRADUAÇÃO
Área/Curso: si
Andamento: cursando

Re: Limites Fundamentais

Mensagempor Russman » Sáb Jun 23, 2012 19:23

Você conhece o Teorema de l'Hôpital? Se não, segue o link abaixo.

http://pt.wikipedia.org/wiki/Regra_de_l'H%C3%B4pital

Então, veja que se x=0 voê obtem uma indeterminação do tipo 0/0. Assim, derivando ambos os membros, obtemos

lim (sin(ax))/(sin(bx)) = lim (a.cos(ax))/(b.cos(bx)) .

Agora, quando x=0 temos a/b pois cos(a.0) = cos(0) = 1 e cos(b.0)=cos(0) = 1.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Limites Fundamentais

Mensagempor Allysom » Sáb Jun 23, 2012 19:41

Muito obrigado por responder. Bem eu ainda não aprendi a derivar , mas o meu professor me deu este limite como base para respondelo.
\lim_{x\rightarrow0}\frac{sen x}{ x } =1
Allysom
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mar 14, 2012 04:30
Formação Escolar: GRADUAÇÃO
Área/Curso: si
Andamento: cursando

Re: Limites Fundamentais

Mensagempor Russman » Sáb Jun 23, 2012 19:54

Se você quiser usar este limite então proceda assim:

\lim_{x\rightarrow 0 }\frac{sin(5x)}{sin(2x)} = \lim_{x\rightarrow 0 }\frac{\frac{sin(5x)}{5x}}{\frac{sin(2x)}{2x}}.\frac{2x}{5x}=\frac{2.\lim_{x\rightarrow 0 }\frac{sen(5x)}{5x}}{5.\lim_{x\rightarrow 0 }\frac{sin(2x)}{2x}} = \frac{2}{5}.\frac{1}{1} = \frac{2}{5}

Entende? Se tiver dúvida em algum passo, pergunte.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}