• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites laterais] Questão

[Limites laterais] Questão

Mensagempor Leti Moura » Qui Jun 14, 2012 00:52

lim_{x\to\ 4 esquerda} \left\frac{3-x}{x^2-2x-8}

Eu tentei fazer invertendo a fração, tentei também com x em evidência, mas deu indeterminação.
Leti Moura
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Jun 12, 2012 20:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Pesca
Andamento: cursando

Re: [Limites laterais] Questão

Mensagempor Claudin » Qui Jun 14, 2012 01:40

Para começar a forma correta seria:

\lim_{x\rightarrow4^-}\frac{3-x}{x^2-2x-8}

Da pra notar que a fatoração não irá ajudar nesse caso.

Pois temos no numerador 3-x ou -(x-3)

E no numerador: (x-4)(x+2)
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites laterais] Questão

Mensagempor Claudin » Qui Jun 14, 2012 01:42

\lim_{x\rightarrow4^-}\frac{3-x}{x^2-2x-8}

Passando o limite diretamente temos:

\lim_{x\rightarrow4^-}\frac{3-x}{x^2-2x-8}\Leftrightarrow \frac{-1}{4^2-2x-8}= \frac{-1}{0^+}= +\infty
Editado pela última vez por Claudin em Sex Jun 15, 2012 02:42, em um total de 1 vez.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites laterais] Questão

Mensagempor Leti Moura » Qui Jun 14, 2012 21:39

Você tem razão. Eu fiz assim, mas esqueci que n/o = infinito! Mas, por que + infinito?
Leti Moura
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Jun 12, 2012 20:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Pesca
Andamento: cursando

Re: [Limites laterais] Questão

Mensagempor Claudin » Sex Jun 15, 2012 02:45

Basta analisar que: dividir um número (uma constante no caso o -1) por um número que se aproxima de 0^+, ou seja, aproximando pela direita teríamos como resposta o mais infinito. Analogamente notamos que a divisão de uma constante por um número que se aproxima de 0^-, ou seja, aproximando pela esquerda teríamos como resposta o menos infinito.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites laterais] Questão

Mensagempor fraol » Sáb Jun 16, 2012 20:07

Boa noite,

Claudin escreveu:Basta analisar que: dividir um número (uma constante no caso o -1) por um número que se aproxima de 0^+, ou seja, aproximando pela direita teríamos como resposta o mais infinito. Analogamente notamos que a divisão de uma constante por um número que se aproxima de 0^-, ou seja, aproximando pela esquerda teríamos como resposta o menos infinito.


Não há uma contradição matemática aí: numerador negativo e denominador positivo e quociente positivo?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Limites laterais] Questão

Mensagempor Leti Moura » Sáb Jun 16, 2012 20:11

huum.. eu acho que é mais inifinito, porque ficaria -1/0-, não?
obs: c/0- = +infinito, se c>0 ou - infinito, se c<0

por que 0+ se tá se aproximando pela esquerda?
Leti Moura
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Jun 12, 2012 20:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Pesca
Andamento: cursando

Re: [Limites laterais] Questão

Mensagempor fraol » Sáb Jun 16, 2012 20:21

Sim, esse limite para x \rightarrow 4^{-} tende a + \infty. Seu raciocínio está ok.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Limites laterais] Questão

Mensagempor fraol » Sáb Jun 16, 2012 20:40

Lendo melhor a sua anotação, corrijo:

Leti Moura escreveu:huum.. eu acho que é mais inifinito, porque ficaria -1/0-, não?

Sim (supondo a sua notação 0- como sendo um número negativo bem próximo de 0).


Leti Moura escreveu:obs: c/0- = +infinito, se c>0 ou - infinito, se c<0

Supondo a sua notação 0- como sendo um número negativo bem próximo de 0.
Então se c>0, c/0- = -infinito e se c<0, c/0- = +infinito.


Leti Moura escreveu:por que 0+ se tá se aproximando pela esquerda?

0+ significa aproximação a zero pela direita, pelo lado positivo nesse caso.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Limites laterais] Questão

Mensagempor Leti Moura » Sáb Jun 16, 2012 21:12

então a resposta dessa questão seria mesmo +infinito, porque ficaria -1/0-!
Leti Moura
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Jun 12, 2012 20:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Pesca
Andamento: cursando

Re: [Limites laterais] Questão

Mensagempor fraol » Sáb Jun 16, 2012 21:29

Leti Moura escreveu:então a resposta dessa questão seria mesmo +infinito, porque ficaria -1/0-!


Sim.

(editado pouco depois)
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Limites laterais] Questão

Mensagempor Leti Moura » Sáb Jun 16, 2012 21:36

obrigada! treinar bastante pra manter na cabeça!
Leti Moura
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Jun 12, 2012 20:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Pesca
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.