por karinak » Sáb Jun 16, 2012 02:08
Sou iniciante em calculo e me deparei com a seguinte questão (cos x.senx )/(tg x), não sei como aplicar as duas fórmulas ao mesmo tempo.
Obrigada pela atenção!
-
karinak
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Jun 15, 2012 23:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia civil
- Andamento: cursando
por Jhonata » Sáb Jun 16, 2012 10:58
karinak escreveu:Sou iniciante em calculo e me deparei com a seguinte questão (cos x.senx )/(tg x), não sei como aplicar as duas fórmulas ao mesmo tempo.
Obrigada pela atenção!
Bom dia!
Nessa situação você terá que aplicar a regra da Cadeia.
Reconheça a identidade

e a reescreva como:

.
Assim, vamos obter:

. Podemos fazer um cancelamento e ficaremos apenas com

.
Tente derivar agora.
OBS: Eu acho que em questões que envolvem expressões trigonométricas, dificilmente será pedido pra usar os dois ao mesmo tempo, até porque é um pouco complicado. De qualquer forma, se você quiser aplicar essas regras, você poderia desmembrar o integrando, mas daria muito trabalho.
Por exemplo:
Reescreveria a expressão assim:

*

e aplicar a regra do produto fazendo f(x)=senxcosx e g(x)=1/tgx, mas nessa aplicação você aplicaria várias vezes a regra dentro de regra, o que seria muito trabalhoso.
Abraços.
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por karinak » Sáb Jun 16, 2012 12:43
Obrigada pela ajuda, deu para esclarecer bastante as minhas dúvidas.Essa questão foi de uma prova do semestre passado, estou refazendo caso a proff as repita.
-
karinak
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Jun 15, 2012 23:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Funciona para produto mas não para quociente?
por Matheus Lacombe O » Ter Dez 11, 2012 23:46
- 1 Respostas
- 2072 Exibições
- Última mensagem por Russman

Qua Dez 12, 2012 01:39
Cálculo: Limites, Derivadas e Integrais
-
- inequação produto/quociente
por vhcs29 » Qui Abr 01, 2010 12:32
- 2 Respostas
- 5145 Exibições
- Última mensagem por vhcs29

Sex Abr 02, 2010 12:59
Álgebra Elementar
-
- Produtos Notáveis - como aplicar nesta equação
por fcomex » Ter Mai 20, 2014 00:15
- 1 Respostas
- 1209 Exibições
- Última mensagem por fcomex

Ter Mai 20, 2014 01:13
Álgebra Elementar
-
- Como aplicar o metodo de Gauss Jordan nesse sistema.
por 380625 » Sáb Ago 20, 2011 16:19
- 3 Respostas
- 5909 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 22:26
Sistemas de Equações
-
- [Derivada] Ajuda com calculo de derivada de função quociente
por alienpuke » Dom Out 25, 2015 15:31
- 1 Respostas
- 10374 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2015 16:47
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.