• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Parábola

Parábola

Mensagempor Claudin » Ter Jun 12, 2012 20:46

Dada a parábola y^2+6y-2x+9=0, determine os valores de m para que a reta x+2y+m=0

a) Seja secante à parábola
b) Seja tangente à parábola
c) Não corte a parábola
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parábola

Mensagempor LuizAquino » Qua Jun 13, 2012 10:39

Claudin escreveu:Dada a parábola y^2+6y-2x+9=0, determine os valores de m para que a reta x+2y+m=0

a) Seja secante à parábola
b) Seja tangente à parábola
c) Não corte a parábola


Basta utilizar o mesmo raciocínio que lhe foi explicado em seu outro tópico:

Elipse
viewtopic.php?f=117&t=8483
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Parábola

Mensagempor Claudin » Qua Jun 13, 2012 21:09

Não consegui resolver o exercício.
Encontrei essa equação quando substitui o valor do y na equação.

5x^2+7xm+7m^2-8x+36
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parábola

Mensagempor LuizAquino » Qui Jun 14, 2012 14:46

Claudin escreveu:Não consegui resolver o exercício.
Encontrei essa equação quando substitui o valor do y na equação.

5x^2+7xm+7m^2-8x+36


Fazendo a substituição y = \frac{-x-m}{2}, você deveria obter:

\left(\frac{-x-m}{2}\right)^2 + 6\left(\frac{-x-m}{2}\right) - 2x + 9 = 0

\frac{x^2 + 2mx + m^2}{4} -3x - 3m - 2x + 9 = 0

x^2 + 2mx + m^2 -12x - 12m - 8x + 36 = 0

x^2 + (2m - 20)x + \left(m^2 - 12m + 36\right) = 0

Considerando isso como uma equação polinomial do 2° grau na incógnita x, calcule o discriminante \Delta . Em seguida, use a análise que lhe foi explicada em seu outro tópico.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Parábola

Mensagempor Claudin » Qui Jun 14, 2012 15:07

Mas no caso, o meu "c" da equação do segundo grau quando for calcular o delta, seria uma nova equação do segundo grau, ou seja, irei obter dois valores para c?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parábola

Mensagempor Russman » Qui Jun 14, 2012 20:02

Nãao. Os valores "c" da equação de 2° grau em x que foi calculada dependem dos valores "m" de acordo com a relação

c= m^{2} - 12m + 36.

Ainda, a = 1 e b=2m-20.

Com isso, o discriminate \Delta da equação é

\Delta =b^{2}-4ac = (2m-20)^{2}-4.1.(m^{2}-12m + 36) = -32m + 256.

É crucial o calculo do discriminante pois é ele que comanda o tipo de solução que a equação terá. Veja que para a reta ser secante ao gráfico devem exixtir dois pontos de intersecção, ou seja, dois valores para x. Fazendo \Delta >0 isto é garantido. Já, para a reta ser tangente deve existir apenas um ponto de intersecção que é garantido fazendo \Delta =0. Para que não exista nehuma solução real, ou seja, a reta não intersecione o gráfico, basta tomar \Delta <0.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Parábola

Mensagempor Claudin » Sex Jun 15, 2012 02:40

Valeu pela dica Russman. :y:
Irei refazer o exercício e amanha posto se consegui ou se continuo com alguma dúvida.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}