por Anniemf » Qua Mai 23, 2012 21:26
No triângulo ADE,vamos designar o ângulo EÂD como sendo alfa.Como AD é bissetriz,o ângulo DÂB também vale alfa.
Como a reta AB e EF são paralelas,os ângulos DÂB E A^DE são alternos internos e o ângulo A^DE também vale alfa.Com isso,concluímos que o triângulo AED é isósceles.Chamando o segmento ED=x,o segmento AE também é igual a x.
De maneira análoga,faremos o mesmo com o triãngulo BDF.Vamos designar o ãngulo D^BF como sendo beta.Como BD é bissetriz,o ângulo D^BA também vale beta.Os ângulos D^BA E F^DB são alternos internos e com isso o ângulo F^DB também vale beta.Sendo assim,o triângulo BDF é isósceles.Chamando o segmento DF=Y,o segmento FB também é igual a y.
Como o segmento AC=12 e o segmento AE=X,EC=12-X
Como o segmento BC=8 e o segmento FB=Y,CF=8-Y
Perímetro do triângulo CEF= 12-X+X+Y+8-Y=20