• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Essa n é pra qualquer um!

Essa n é pra qualquer um!

Mensagempor bmachado » Ter Mai 22, 2012 15:53

Na ilustração a seguir os segmentos, AD e BD eStao naS biSSetrizeS respectivas Dos ângulos CAB e CBA do triangulo ABC, e EF, que contem D, é paralela a AB.e AC=12 e BC=8, qual o perímetro do triangulo CEF?
Obrigado colaborar com minha preparação!
quetao trian.png
quetao trian.png (11.51 KiB) Exibido 7346 vezes
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado

Re: Essa n é pra qualquer um!

Mensagempor Anniemf » Qua Mai 23, 2012 21:26

No triângulo ADE,vamos designar o ângulo EÂD como sendo alfa.Como AD é bissetriz,o ângulo DÂB também vale alfa.
Como a reta AB e EF são paralelas,os ângulos DÂB E A^DE são alternos internos e o ângulo A^DE também vale alfa.Com isso,concluímos que o triângulo AED é isósceles.Chamando o segmento ED=x,o segmento AE também é igual a x.

De maneira análoga,faremos o mesmo com o triãngulo BDF.Vamos designar o ãngulo D^BF como sendo beta.Como BD é bissetriz,o ângulo D^BA também vale beta.Os ângulos D^BA E F^DB são alternos internos e com isso o ângulo F^DB também vale beta.Sendo assim,o triângulo BDF é isósceles.Chamando o segmento DF=Y,o segmento FB também é igual a y.

Como o segmento AC=12 e o segmento AE=X,EC=12-X
Como o segmento BC=8 e o segmento FB=Y,CF=8-Y

Perímetro do triângulo CEF= 12-X+X+Y+8-Y=20
Anniemf
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Mar 28, 2012 14:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Essa n é pra qualquer um!

Mensagempor bmachado » Qua Mai 23, 2012 23:07

Veja, no link abaixo, a questão 8, em que aparece a resposta com a respectiva justificativa:

4shared.com /doc/pp80PUOO/preview.html
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?