• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação de hipérbole] Ajude exercício

[Equação de hipérbole] Ajude exercício

Mensagempor gustavohenrique » Qua Mai 16, 2012 22:35

Pessoal estou tentando a tempos e não consigo resolver este exercícios de G.A, alguém poderia me ajudar?


Exercício: Determine a equação hiperbole de vértices A1=(1,-2), A2=(5, -2), sabendo que um dos focos é F=(6,-2).




Agradeço.
gustavohenrique
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mai 16, 2012 22:25
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel em ciência da computação exatas
Andamento: cursando

Re: [Equação de hipérbole] Ajude exercício

Mensagempor DanielFerreira » Sáb Mai 19, 2012 12:39

gustavohenrique escreveu:Pessoal estou tentando a tempos e não consigo resolver este exercícios de G.A, alguém poderia me ajudar?
Exercício: Determine a equação hiperbole de vértices A1=(1,-2), A2=(5, -2), sabendo que um dos focos é F=(6,-2).
Agradeço.

Gustavo,
seja bem vindo!
Sugiro que monte o gráfico, assim visualizará melhor; inclusive que o centro da hipérbole será (3, - 2)

Temos os vértices da hipérbole, então podemos determinar o valor de "a":
(1, - 2) e (5, - 2), veja

\frac{5 - 1}{2} = 2 ====> a = 2

A distância do foco dado p/ A2 em no eixo x é 6 - 5 = 1, então, o outro foco será (0, - 2). Em x (1 - 1 = 0); em y (- 2) está fixado.

Agora temos os focos: (0, - 2) e (6, -2). Da mesma forma vamos encontrar "c":

\frac{6 - 0}{2} = 3 ====> c = 3

Resta-nos encontrar "b", que é dado por:
c^2 = a^2 + b^2 ====> b^2 = 9 - 4 ====> b^2 = 5

Daí, segue que:

\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1

\frac{(x - 3)^2}{4} - \frac{(y + 2)^2}{5} = 1
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Equação de hipérbole] Ajude exercício

Mensagempor gustavohenrique » Sáb Mai 19, 2012 13:42

Vlw :D
gustavohenrique
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mai 16, 2012 22:25
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel em ciência da computação exatas
Andamento: cursando

Re: [Equação de hipérbole] Ajude exercício

Mensagempor DanielFerreira » Sáb Mai 19, 2012 14:17

:y:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}