• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Na figura,

Na figura,

Mensagempor Lorrane12 » Qui Abr 26, 2012 15:22

Na figura, ABCD é um quadrado e CF = AG = 2 . Calcule CE
Anexos
cats.jpg
Imagem do quadrado
cats.jpg (5.84 KiB) Exibido 3043 vezes
Lorrane12
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 23, 2012 19:36
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Na figura,

Mensagempor nakagumahissao » Seg Abr 30, 2012 00:08

Você não colocou neste fórum o que já tentou fazer para resolver o problema, no entanto, eis a solução:

Imagem

Olhando no diagrama modificado acima, você poderá utilizar as relações dos triângulos e suas proporções para resolver o problema, ou seja: (Temos 8 + 2 em um dos lados do triângulo maior que se relaciona com om 2 do triângulo menor)

\frac{2}{10} = \frac{\textit{CE}}{6} \Rightarrow

\Rightarrow {CE} = \frac{2 \times 6}{10} = \frac{12}{10} = 1,2

Portanto,

\textit{CE} = 1,2

Creio que esta resposta satisfaz a o problema exposto.
Editado pela última vez por nakagumahissao em Ter Mai 01, 2012 01:03, em um total de 1 vez.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Na figura,

Mensagempor DanielFerreira » Ter Mai 01, 2012 00:31

Nakagumahissao,
como concluiu que CD = 8 e DG = 6?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Na figura,

Mensagempor nakagumahissao » Ter Mai 01, 2012 01:00

No seu problema, em sua figura, consta 8 em AB, assim, como estamos lidando com um quadrado, consequentemente, CD =8. Para se chegar a DG = 6, note que se todos os lados do quadrado são iguais e valem 8, DG + GA = 8 => DG = 8 - GA => DG = 8 - 2 => DG = 6;

Espero ter respondido suas perguntas convenientemente.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Na figura,

Mensagempor DanielFerreira » Ter Mai 01, 2012 01:08

nakagumahissao escreveu:No seu problema, em sua figura, consta 8 em AB, assim, como estamos lidando com um quadrado, consequentemente, CD =8. Para se chegar a DG = 6, note que se todos os lados do quadrado são iguais e valem 8, DG + GA = 8 => DG = 8 - GA => DG = 8 - 2 => DG = 6;

Espero ter respondido suas perguntas convenientemente.

E aí meu camarada, blz?
Não postei esse problema, apenas indaguei esses valores por não ter conseguido visualizá-los. Quando o copiei para uma folha, equivocadamente, não vi esse 8.
Por isso não consegui concluir nada! Rsrsr
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Na figura,

Mensagempor nakagumahissao » Ter Mai 01, 2012 01:27

Sem problema. Nem notei também que era você escrevendo ao invés da pessoa que postou originalmente o problema. Vlw
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}