• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[circunferência] determinar a equação

[circunferência] determinar a equação

Mensagempor Fabio Wanderley » Qui Abr 26, 2012 11:23

Olá, pessoal

Segue o exercício do Reis/Silva:

p.54
2.65) Determine uma equação da circunferência tangente às retas y = x e y = -x nos pontos (3,3) e (-3,3).

Eu tentei encontrar o ponto do centro da circunferência, mas só consegui concluir que x_0 = 0 (calculando a distância da origem aos pontos pertencentes à reta).
Alguém pode me ajudar?

Resposta: x^2 + \left(y - 6 \right)^2 = 18

Desde já agradeço!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [circunferência] determinar a equação

Mensagempor LuizAquino » Qui Abr 26, 2012 16:16

Fabio Wanderley escreveu:2.65) Determine uma equação da circunferência tangente às retas y = x e y = -x nos pontos (3,3) e (-3,3).


Fabio Wanderley escreveu:Eu tentei encontrar o ponto do centro da circunferência, mas só consegui concluir que x_0 = 0 (calculando a distância da origem aos pontos pertencentes à reta).
Alguém pode me ajudar?


Para resolver esse exercício, siga os passos:

1) Determine a reta que passa pelo ponto (3, 3) e é perpendicular a reta y = x;
2) Determine a reta que passa pelo ponto (-3, 3) e é perpendicular a reta y = -x;
3) Determine o ponto de interseção entre as retas encontradas nos passos 1) e 2). Esse ponto corresponde ao centro da circunferência procurada;
4) Calcule a distância entre o ponto encontrado no passo 3) e o ponto (3, 3) (ou a distância ao ponto (-3,3) se preferir). Essa distância corresponde ao raio da circunferência procurada;
5) Considerando o centro encontrado no passo 3) e o raio no passo 4), determine a equação da circunferência procurada.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}