por monicadiasf » Ter Abr 24, 2012 00:37
Olá pessoas! Sou novata por aqui.. Encontrei o site quando procurava pela resolução de alguns exercícios de matemática, além das teorias disponíveis no fórum. Espero poder ajudar sempre que possível! Minha primeira dúvida envolve o seguinte exercício:
(EsPCEx) - Considere a matriz quadrada A =
![\[
\left(
\begin{array}{ccc}
sen18º & cos72º \\
sen36º & cos54º \end{array}
\right)\] \[
\left(
\begin{array}{ccc}
sen18º & cos72º \\
sen36º & cos54º \end{array}
\right)\]](/latexrender/pictures/9232a4bc5bf23b6635ec4d8f76334836.png)
.
O valor do determinante de A é:
a) -2
b) -1
c) 0
d) 1
e) 2
Letra C (queria colocar oculto, mas não sei fazer isso xD)
obs1.: Não sei porque o  saiu na minha fórmula em formato Latex (ainda estou aprendendo como isso funciona). Acho que deu para entender que se trata de ângulos, né?
obs2.: Eu comecei a resolução tentando encontrar o determinante pela Regra de Sarrus e pensei em transformar todos os elementos em sen ou cos de 18º através das fórmulas:
cos(a + b) = cos a · cos b - sen a · sen b
sen(a + b) = sen a · cos b + sen b · cos a
Pois:
36º = 18º + 18º
54º = 18º + 36º
72º = 18º + 54º
Mas ficou muito grande e eu acabei me perdendo!
Ajuda??
Muuuito obrigada!
-
monicadiasf
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Abr 20, 2012 15:01
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Fisioterapia
- Andamento: cursando
por Russman » Ter Abr 24, 2012 04:18
Veja que esta matriz é quadrada, de ordem 2. Assim, seu determinante é diferença do produto dos elementos das diagonais princiapal e secundária.
Isto é:

Agora observe que

.
Assim,

e

Portanto,

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (ESPCEX)Função
por natanskt » Sex Out 15, 2010 23:48
- 1 Respostas
- 1662 Exibições
- Última mensagem por DanielRJ

Sáb Out 16, 2010 00:30
Funções
-
- (ESPCEX)Função
por natanskt » Ter Out 19, 2010 10:20
- 2 Respostas
- 3752 Exibições
- Última mensagem por MarceloFantini

Ter Out 19, 2010 17:42
Funções
-
- (ESPCEX)Função
por natanskt » Ter Out 19, 2010 10:38
- 2 Respostas
- 4084 Exibições
- Última mensagem por natanskt

Qua Out 20, 2010 10:05
Funções
-
- (ESPCEX)Função
por natanskt » Ter Out 19, 2010 10:47
- 1 Respostas
- 3237 Exibições
- Última mensagem por MarceloFantini

Ter Out 19, 2010 17:32
Funções
-
- (ESPCEX)Função
por natanskt » Ter Out 19, 2010 10:52
- 1 Respostas
- 2541 Exibições
- Última mensagem por DanielRJ

Ter Out 19, 2010 16:10
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.