• Anúncio Global
    Respostas
    Exibições
    Última mensagem

TRIGONOMETRIA - CÁLCULO COM FUNÇÕES INVERSAS

TRIGONOMETRIA - CÁLCULO COM FUNÇÕES INVERSAS

Mensagempor emsbp » Qui Abr 19, 2012 19:13

Boa tarde.
O exercício é para calcular cos(arcsen (a) +arcsen (b)).
Comecei por aplicar regras das funções trigonométricas inversas:
cos(arcsen (a) +arcsen (b))= cos(arcsen(a\sqrt{1-b^{2}}+b\sqrt{1-a^{2}})). A partir deste ponto não estou a conseguir chegar à solução dada: \sqrt{1-a^{2}}.\sqrt{1-b^{2}}-ab.
Qual o passo que devo seguir?
Obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: TRIGONOMETRIA - CÁLCULO COM FUNÇÕES INVERSAS

Mensagempor Guill » Sáb Abr 21, 2012 09:30

Podemos chamar de x o valor:

x=cos(arcsen(a)+arcsen(b))


Desenvolvendo a soma de cossenos:

x=cos(arcsen(a)).cos(arcsen(b))-sen(arcsen(a)).sen(arcsen(b))

x=cos(arcsen(a)).cos(arcsen(b))-a.b


Antes de continuar, temos que definir o seguinte:

Sen²x + cos²x = 1

senx=\sqrt[]{1 - cos^2 x}


Agora, basta desenvolver:


x=cos(arcsen(a)).cos(arcsen(b))-a.b

x=\sqrt[]{1 - sen^2 (arcsen(a))}.\sqrt[]{1 - sen^2 (arcsen(b))} - a.b

x=\sqrt[]{1 - a^2}\sqrt[]{1 -b^2}- a.b
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: TRIGONOMETRIA - CÁLCULO COM FUNÇÕES INVERSAS

Mensagempor DanielFerreira » Sáb Abr 21, 2012 18:25

Outra forma:
emsbp escreveu:Boa tarde.
O exercício é para calcular cos(arcsen (a) +arcsen (b)).
Comecei por aplicar regras das funções trigonométricas inversas:
cos(arcsen (a) +arcsen (b))= cos(arcsen(a\sqrt{1-b^{2}}+b\sqrt{1-a^{2}})). A partir deste ponto não estou a conseguir chegar à solução dada: \sqrt{1-a^{2}}.\sqrt{1-b^{2}}-ab.
Qual o passo que devo seguir?
Obrigado!

cos(arc sen a + arc sen b) =

Consideremos:
I) arc sen a = x

sen x = a ============de== sen²x + cos²x = 1======temos==========> cos x = \sqrt[]{1 - sen^2 x} ==========> cos x = \sqrt[]{1 - a^2}



II) arc sen b = y

sen y = b ============de== sen²x + cos²x = 1======temos==========> cos y = \sqrt[]{1 - sen^2 y} ==========> cos y = \sqrt[]{1 - b^2}


continuando...
cos(arc sen a + arc sen b) =

cos(x + y) =

cos x . cos y - sen x . sen y =

(\sqrt[]{1 - a^2})(\sqrt[]{1 - b^2}) - ab
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: TRIGONOMETRIA - CÁLCULO COM FUNÇÕES INVERSAS

Mensagempor emsbp » Dom Abr 22, 2012 17:43

Muito obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: TRIGONOMETRIA - CÁLCULO COM FUNÇÕES INVERSAS

Mensagempor DanielFerreira » Ter Abr 24, 2012 20:14

vlw.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?