• Anúncio Global
    Respostas
    Exibições
    Última mensagem

triângulo retângulo

triângulo retângulo

Mensagempor Suellen » Qui Abr 12, 2012 22:50

Primeiramente, boa noite.
Sou nova aqui no fórum e gosto de resolver exercícios, pena que não são todos que consigo completar.
(já consegui resolver varios tipos desses exercicios, mas por não colocar em prática não me lembro mais) :$

-Uma pessoa vê o topo de uma torre sob um ângulo de 30º. Caminhando 100m em linha reta, aproximando-se da torre, alcança um segundo ponto, de onde vê o topo sob um ângulo de 60º. Qual a distância da torre ao segundo ponto?

(OBS:queria mostrar juntamente uma figura do exercicio, mas não sei ainda como ponho aqui, o que faço?)
Suellen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 12, 2012 22:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: triângulo retângulo

Mensagempor Edu-sjc » Sex Abr 13, 2012 13:09

Se esta for a figura eu fiz assim.
No triâgulo ABC temos que:

tg30°=\frac{H}{100+x} \Rightarrow H=\left(100+x \right)\frac{\sqrt[2]{3}}{2}

E no triâgulo BCD temos que:

tg60°=\frac{H}{x} \Rightarrow x\sqrt[2]{3}=H

Agora só igualar o H, teremos:

x\sqrt[2]{3}=\left(100+x \right)\frac{\sqrt[2]{3}}{2} \Rightarrow 2x=100+x \Rightarrow x=100m

Espero que esta seja a resposta. E para colocar a imagem é só você vir em adicionar um anexo, clicar em selecionar um arquivo e abrir a imagem salvo no seu computador, blz :y: espero ter ajudado!!!
Anexos
Capturar.PNG
Edu-sjc
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Out 26, 2011 12:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: triângulo retângulo

Mensagempor Suellen » Seg Abr 16, 2012 19:12

obg. acho que entendi.

até mais..
Suellen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 12, 2012 22:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: triângulo retângulo

Mensagempor DanielFerreira » Ter Mai 01, 2012 00:42

Edu,
vc cometeu um equívoco no valor de tg 30°.

tg 30^0 = \frac{\sqrt[]{3}}{3}

Edu-sjc escreveu:Se esta for a figura eu fiz assim.
No triâgulo ABC temos que:

tg30^0=\frac{H}{100+x} \Rightarrow H=\left(100+x \right)\frac{\sqrt[]{3}}{3}

E no triâgulo BCD temos que:

tg60^0=\frac{H}{x} \Rightarrow x\sqrt[]{3}=H

Agora só igualar o H, teremos:

x\sqrt[]{3}=\left(100+x \right)\frac{\sqrt[]{3}}{3} \Rightarrow 3x=100+x \Rightarrow x=50m

Espero que esta seja a resposta. E para colocar a imagem é só você vir em adicionar um anexo, clicar em selecionar um arquivo e abrir a imagem salvo no seu computador, blz :y: espero ter ajudado!!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: triângulo retângulo

Mensagempor Suellen » Qui Mai 03, 2012 17:57

é verdade "dan".
obg pela correção.
Suellen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 12, 2012 22:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: triângulo retângulo

Mensagempor DanielFerreira » Qui Mai 03, 2012 20:53

Não há de quê!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: triângulo retângulo

Mensagempor Edu-sjc » Seg Mai 07, 2012 10:42

Poh que mancada!!
Edu-sjc
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Out 26, 2011 12:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59