• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dificuldade com limites e módulos

Dificuldade com limites e módulos

Mensagempor Luisags » Qui Abr 12, 2012 23:05

Olá!
Boa noite a todos, gostaria de uma ajuda em um limite:
\lim_{x->4}\frac{4-v}{|4-v|}
tenho a resolução do problema, porém não consegui entender o porque de dar -1 o resultado. Não consigo concordar com o (-).
Obrigada!
Luisags
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 12, 2012 22:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia química
Andamento: cursando

Re: Dificuldade com limites e módulos

Mensagempor LuizAquino » Qui Abr 12, 2012 23:48

Luisags escreveu:Olá!
Boa noite a todos, gostaria de uma ajuda em um limite:
\lim_{x->4}\frac{4-v}{|4-v|}
tenho a resolução do problema, porém não consegui entender o porque de dar -1 o resultado. Não consigo concordar com o (-).


Pela definição de módulo, temos que:

|4 - v| = \begin{cases}4 - v, \textrm{ se } 4 - v \geq 0 \\ -(4 - v), \textrm{ se } 4 - v < 0 \end{cases}

Ou seja, temos que:

|4 - v| = \begin{cases}4 - v, \textrm{ se } v \leq 4 \\ -(4 - v), \textrm{ se } v > 4 \end{cases}

Calculando então esse limite, temos que:

\lim_{v\to 4^-} \dfrac{4 - v}{|4 - v|} = \lim_{v\to 4^-} \dfrac{4 - v}{4 - v} = \lim_{v\to 4^-} 1 = 1

\lim_{v\to 4^+} \dfrac{4 - v}{|4 - v|} = \lim_{v\to 4^+} \dfrac{4 - v}{-(4 - v)} = \lim_{v\to 4^+} -1 = -1

Como esses limites laterais são diferentes, temos que não existe o limite: \lim_{v\to 4} \dfrac{4 - v}{|4 - v|} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dificuldade com limites e módulos

Mensagempor Luisags » Sex Abr 13, 2012 00:51

Muito obrigada, LuizAquino!
Consegui entender o porque, agora.
Boa noite!
Luisags
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 12, 2012 22:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia química
Andamento: cursando

Re: Dificuldade com limites e módulos

Mensagempor gabriel feron » Seg Abr 16, 2012 03:55

Desculpa retornar o assunto, mas sou iniciante no calculo 1, to correndo atras, dai queria tirar uma duvida
se a questao nao estivesse com modulo:
\lim_{4}(u - 4)/u-4

o que aconteceria? o que mudaria em relacao a com modulo

muito obrigado e desculpe qualquer inconveniência(primeira vez que estou usando o forum).
gabriel feron
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Abr 16, 2012 03:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Hídrica
Andamento: cursando

Re: Dificuldade com limites e módulos

Mensagempor LuizAquino » Seg Abr 16, 2012 15:34

gabriel feron escreveu:se a questao nao estivesse com modulo:
\lim_{4}(u - 4)/u-4

o que aconteceria? o que mudaria em relacao a com modulo


O que você escreveu é equivalente a:

\lim_{u\to 4} \dfrac{(u-4)}{u} - 4

Mas o que você deseja é na verdade:

\lim_{u\to 4} \dfrac{u - 4}{u - 4}

Nesse caso, você deveria ter escrito algo como:

\lim_{u\to 4} (u - 4)/(u - 4)

Note a importância de colocar os parênteses.

Vamos agora analisar esse limite.

Suponha que você tenha um número real x (diferente de zero). Quanto vale x/x? Ora, isso vale 1.

No limite de seu exemplo, temos o número u - 4. Como u está se aproximando de 4, mas não é 4, temos que u - 4 é diferente de zero. Sendo assim, quanto vale (u - 4)/(u - 4) ? Ora, isso vale 1.

Temos então o seguinte:

\lim_{u\to 4} \dfrac{u - 4}{u - 4} = \lim_{u\to 4} 1 = 1
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dificuldade com limites e módulos

Mensagempor gabriel feron » Ter Abr 17, 2012 03:17

Entendi, muito obrigado, na verdade eu sabia so que pela falta de atencao nao me liguei, to comecando o calculo agora ^^

obs: sobre o parentes eu achei que tinha corrigido, mas bom que agora ja aprendi a fazer limite pelo editor de formulas! :D

valeu!!! :D
gabriel feron
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Abr 16, 2012 03:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Hídrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)