• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dependência Linear] Exercício do Boulos

[Dependência Linear] Exercício do Boulos

Mensagempor Vinicius Rodrigues » Dom Abr 01, 2012 01:52

Suponha que (\vec{u}, \vec{v}, \vec{w}) seja LI. Dado \vec{t}, existem \alpha, \beta e \gamma tais que \vec{t}=\alpha\vec{u}+\beta\vec{v}+\gamma\vec{w}.
Prove:

Tentei a ida primeiro.

Certo, creio que o caminho seja avaliar as soluções de
x(\vec{u})+\vec{t})+y(\vec{v})+\vec{t})+\z(\vec{w})+\vec{t})=\vec(0)

Substituindo \vec{t}=\alpha\vec{u}+\beta\vec{v}+\gamma\vec{w} e desenvolvendo, colocando u, v e w em evidência, chego em:
x(a+1)+ya+za=0
y(b+1)+yb+zb=0
z(c+1)+yc+zc=0
Empaco aí. não consigo chegar em um meio de mostrar que a soma de a, b e c deve ser diferente de -1.
Alguma sugestão?
Editado pela última vez por Vinicius Rodrigues em Dom Abr 01, 2012 03:42, em um total de 1 vez.
Vinicius Rodrigues
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Abr 01, 2012 01:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Dependência Linear] Exercício do Boulos

Mensagempor MarceloFantini » Dom Abr 01, 2012 03:32

Vinícius, por favor leia as regras do fórum, em especial a primeira.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Dependência Linear] Exercício do Boulos

Mensagempor Vinicius Rodrigues » Dom Abr 01, 2012 03:43

Desculpe-me. Editei. Amanhã coloco mais detalhes, agora estou caindo de sono. Obrigado ^^.
Vinicius Rodrigues
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Abr 01, 2012 01:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.