• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limites trigonométricos

limites trigonométricos

Mensagempor Arthur_Bulcao » Qua Mar 28, 2012 19:19

Estou com problema ao calcular o limite:

\lim_{x\rightarrow0}\;\frac{tgx-senx}{x^3}

Não sei nem por onde começar.
Já estudei teorema dos confrontos.


Agradeço qualquer ajuda
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando

Re: limites trigonométricos

Mensagempor fraol » Qua Mar 28, 2012 22:38

Se você aplicar o limite diretamente chegará a \frac{0}{0} que é um tipo de indeterminação.

Minha sugestão é você usar a Regra de L'Hopital. Essa regra diz que

\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{f'(x)}{g'(x)}

onde f' e g' são, respectivamente, as derivadas do numerador e do denominador (há algumas restrições de aplicação, mas não é o caso aqui já que as funções são deriváveis nas proximidades de x = 0).

Se você optar por usar L'Hopital, deverá aplicar a regra sucessivamente até sair dos vários \frac{0}{0} que irão surgindo. Ao final, se tudo estiver ok você obterá \frac{1}{2} como resposta.

No caso de não conhecer a regra sugiro que você pesquise a respeito e, também, assista a aula sobre esse assunto do nosso colega de forum, o professor LuizAquino, que está no endereço http://www.youtube.com/watch?v=-TNbOIad3Oc.

Agora, a título de curiosidade (minha :!: ), pois essa função é um tanto complexa, fiz um gráfico no Geogebra e parte dele está abaixo. Veja que o valor da função aproxima-se de \frac{1}{2} para x aproximando-se de 0 por ambos os lados.

func-tanx-senx-sobre-x3.png
funcao
func-tanx-senx-sobre-x3.png (9.61 KiB) Exibido 1665 vezes
.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: limites trigonométricos

Mensagempor LuizAquino » Qua Mar 28, 2012 23:31

Arthur_Bulcao escreveu:Estou com problema ao calcular o limite:
\lim_{x\rightarrow0}\;\frac{tgx-senx}{x^3}


fraol escreveu:Se você aplicar o limite diretamente chegará a \frac{0}{0} que é um tipo de indeterminação.

Minha sugestão é você usar a Regra de L'Hopital. Essa regra diz que

\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{f'(x)}{g'(x)}


Um caminho é usar a Regra de L'Hospital. Mas nesse caso não é necessário.

Aplicando a definição de tangente, temos que:

\lim_{x\to 0} \dfrac{\textrm{tg}\,x- \,\textrm{sen}\, x}{x^3} = \lim_{x\to 0} \dfrac{\frac{\textrm{sen}\,x}{\cos x} - \textrm{sen}\, x}{x^3}

= \lim_{x\to 0} \dfrac{\textrm{sen}\,x - \cos x \, \textrm{sen}\, x}{x^3\cos x}

= \lim_{x\to 0} \dfrac{\textrm{sen}\, x(1 - \cos x)}{x^3\cos x}

= \lim_{x\to 0} \dfrac{\textrm{sen}\, x(1 - \cos x)(1 + \cos x)}{x^3\cos x(1 + \cos x)}

= \lim_{x\to 0} \dfrac{\textrm{sen}\, x\left(1 - \cos^2 x\right)}{x^3\cos x(1 + \cos x)}

= \lim_{x\to 0} \dfrac{\textrm{sen}\, x \, \textrm{sen}^2\, x}{x^3\cos x(1 + \cos x)}

= \lim_{x\to 0} \dfrac{\textrm{sen}^3\, x}{x^3\cos x(1 + \cos x)}

= \left(\lim_{x\to 0} \dfrac{\textrm{sen}\, x}{x}\right)^3 \left[\lim_{x\to 0} \dfrac{1}{\cos x(1 + \cos x)}\right]

Agora fica fácil concluir o exercício.

fraol escreveu:No caso de não conhecer a regra sugiro que você pesquise a respeito e, também, assista a aula sobre esse assunto do nosso colega de forum, o professor LuizAquino, que está no endereço http://www.youtube.com/watch?v=-TNbOIad3Oc.


Obrigado por indicar a videoaula.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: limites trigonométricos

Mensagempor Arthur_Bulcao » Qui Mar 29, 2012 19:13

Um caminho é usar a Regra de L'Hospital. Mas nesse caso não é necessário.

Aplicando a definição de tangente, temos que:

\lim_{x\to 0} \dfrac{\textrm{tg}\,x- \,\textrm{sen}\, x}{x^3} = \lim_{x\to 0} \dfrac{\frac{\textrm{sen}\,x}{\cos x} - \textrm{sen}\, x}{x^3}

= \lim_{x\to 0} \dfrac{\textrm{sen}\,x - \cos x \, \textrm{sen}\, x}{x^3\cos x}

= \lim_{x\to 0} \dfrac{\textrm{sen}\, x(1 - \cos x)}{x^3\cos x}

= \lim_{x\to 0} \dfrac{\textrm{sen}\, x(1 - \cos x)(1 + \cos x)}{x^3\cos x(1 + \cos x)}

= \lim_{x\to 0} \dfrac{\textrm{sen}\, x\left(1 - \cos^2 x\right)}{x^3\cos x(1 + \cos x)}

= \lim_{x\to 0} \dfrac{\textrm{sen}\, x \, \textrm{sen}^2\, x}{x^3\cos x(1 + \cos x)}

= \lim_{x\to 0} \dfrac{\textrm{sen}^3\, x}{x^3\cos x(1 + \cos x)}

= \left(\lim_{x\to 0} \dfrac{\textrm{sen}\, x}{x}\right)^3 \left[\lim_{x\to 0} \dfrac{1}{\cos x(1 + \cos x)}\right]

Agora fica fácil concluir o exercício.





Puxa, obrigado.
Eu só não uso L'Hospital, porque o professor ainda não deu derivadas, e não aceitaria numa prova, por enquanto. :-D
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando

Re: limites trigonométricos

Mensagempor LuizAquino » Qui Mar 29, 2012 23:23

Arthur_Bulcao escreveu:Puxa, obrigado.
Eu só não uso L'Hospital, porque o professor ainda não deu derivadas, e não aceitaria numa prova, por enquanto.


A Regra de L'Hospital costuma deixar o estudante "preguiçoso". Ele acaba não aprendendo a efetuar simplificações algébricas, pois na Regra de L'Hospital basta aplicar algumas derivadas. Mas só que usualmente o conceito de derivadas só é estudado depois que já houve o estudo de limites! Em resumo: quando iniciamos o estudo de limites não podemos usar a Regra de L'Hospital. O ideal é deixar essa regra para calcular alguns limites específicos, que não possuem simplificação algébrica.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.