por LuizCarlos » Sex Mar 16, 2012 18:49
Olá amigos!
Seguinte, estou fazendo exercícios, não estou entendendo essa questão:
Escreva a representação decimal de um número irracional compreendido entre 5 e 6 e de outro compreendido entre 3,1 e 3,2.
Como faço para encontrar números compreendidos entre dois números inteiros, e dois números decimais, no caso 3,1 e 3,2.
Abraço.
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por MarceloFantini » Sex Mar 16, 2012 22:27
Primeiro, é bom perceber que não existe representação decimal finita de um número irracional, apenas as aproximações por racionais que tem, uma vez que pela
definição sabemos que um número racional é a divisão por dois números inteiros. Para esclarecer esse exercício, pense num número cuja raíz quadrada por exemplo esteja entre 5 e 6. Ou seja,

. Isto significa que, elevado ao quadrado, teremos

e

pois respeita a desigualdade. Daí, basta escolher algum que te interesse. Por exemplo,

.
Para facilitar o entendimento, usei "número", mas formalmente escreva alguma letra para denotar álgebra. Perdão pela falta de acento, não tem como no LaTeX.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Numero irracional entre numeros racionais
por Roni Martins » Qua Fev 24, 2010 10:36
- 1 Respostas
- 5968 Exibições
- Última mensagem por Molina

Qua Fev 24, 2010 13:18
Números Complexos
-
- [Equação irracional] Questão da EPCAR
por -daniel15asv » Sex Ago 03, 2012 17:16
- 3 Respostas
- 3420 Exibições
- Última mensagem por DanielFerreira

Sex Ago 17, 2012 21:40
Equações
-
- [Questão] Numero primo
por iuggui » Ter Mai 29, 2018 20:42
- 1 Respostas
- 2508 Exibições
- Última mensagem por DanielFerreira

Qui Mai 31, 2018 11:46
Aritmética
-
- Questão de Concurso-Número Complexos
por Pri Ferreira » Qua Mar 21, 2012 13:44
- 1 Respostas
- 1474 Exibições
- Última mensagem por LuizAquino

Sáb Mar 31, 2012 15:31
Números Complexos
-
- [módulo número complexo] Ajuda questao
por filipetrr » Qui Jun 27, 2013 10:43
- 5 Respostas
- 7042 Exibições
- Última mensagem por adauto martins

Qui Jan 08, 2015 11:28
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.