por Cleyson007 » Ter Fev 28, 2012 17:36
Boa tarde!
Calcule
![\int_{0}^{2}\left[\int_{1}^{3}{x}^{2}y\,dy \right]dx \int_{0}^{2}\left[\int_{1}^{3}{x}^{2}y\,dy \right]dx](/latexrender/pictures/796e820b7b113741419913f2cebf2a53.png)
Gabarito:

Se alguém puder ajudar, agradeço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por LuizAquino » Ter Fev 28, 2012 17:56
Cleyson007 escreveu:Calcule
![\int_{0}^{2}\left[\int_{1}^{3}{x}^{2}y\,dy \right]dx \int_{0}^{2}\left[\int_{1}^{3}{x}^{2}y\,dy \right]dx](/latexrender/pictures/796e820b7b113741419913f2cebf2a53.png)
Gabarito:

O que você já tentou fazer?
Você tem dúvida em algum ponto específico do cálculo dessa integral?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Cleyson007 » Ter Fev 28, 2012 18:14
Boa tarde Luiz Aquino!
Resolvi mas não encontrei a mesma resposta que o gabarito apresenta como correto.
Não postei minha resolução porque não consegui fazer no LateX o intervalo ao resolver a parte interna da integral (segunda integral).
Seria mais ou menos isso --> |3
Pode me ajudar?
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por LuizAquino » Ter Fev 28, 2012 18:47
Cleyson007 escreveu:Resolvi mas não encontrei a mesma resposta que o gabarito apresenta como correto.
Eis a primeira parte da resolução:
![\int_{0}^{2}\left[\int_{1}^{3}{x}^{2}y\,dy \right]\,dx = \int_{0}^{2}\left[{x}^{2}\frac{y^2}{2}\right]_1^3 \,dx \int_{0}^{2}\left[\int_{1}^{3}{x}^{2}y\,dy \right]\,dx = \int_{0}^{2}\left[{x}^{2}\frac{y^2}{2}\right]_1^3 \,dx](/latexrender/pictures/a8ad3e60e28ef89c432f39fa0aeff0d5.png)

Agora tente finalizar.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Cleyson007 » Qui Mar 01, 2012 16:12
Boa tarde Luiz Aquino!
Luiz, na primeira parte estamos derivando em função de y, correto? Se derivamos em função de y, o x é constante, não é mesmo?
Em meu ponto de vista seria:
![\left[{x}^{2}y\frac{{y}^{2}}{2} \right]\Leftrightarrow\left[\frac{{x}^{2}{y}^{3}}{2} \right] \left[{x}^{2}y\frac{{y}^{2}}{2} \right]\Leftrightarrow\left[\frac{{x}^{2}{y}^{3}}{2} \right]](/latexrender/pictures/66cacf41107f8f13f238060da19a8881.png)
Por que não pode ser escrito da forma que escrevi acima?
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por LuizAquino » Qui Mar 01, 2012 16:27
Cleyson007 escreveu:Luiz, na primeira parte estamos derivando em função de y, correto? Se derivamos em função de y, o x é constante, não é mesmo?
Sim, correto.
Cleyson007 escreveu:Em meu ponto de vista seria:
![\left[{x}^{2}y\frac{{y}^{2}}{2} \right]\Leftrightarrow\left[\frac{{x}^{2}{y}^{3}}{2} \right] \left[{x}^{2}y\frac{{y}^{2}}{2} \right]\Leftrightarrow\left[\frac{{x}^{2}{y}^{3}}{2} \right]](/latexrender/pictures/66cacf41107f8f13f238060da19a8881.png)
Por que não pode ser escrito da forma que escrevi acima?
Se
c é uma constante, quanto vale a integral abaixo?

Ora, sabemos que:

Sendo assim, lembrando que a constante agora é
x² ao invés de
c, quanto seria a integral abaixo?

Ora, ela seria:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Dúvida com uma integral simples
por Leonardo Ribeiro » Sex Abr 03, 2015 20:02
- 1 Respostas
- 1998 Exibições
- Última mensagem por Leonardo Ribeiro

Sex Abr 03, 2015 21:06
Cálculo: Limites, Derivadas e Integrais
-
- [integral] duvida integral
por lucasdemirand » Ter Nov 26, 2013 17:47
- 0 Respostas
- 860 Exibições
- Última mensagem por lucasdemirand

Ter Nov 26, 2013 17:47
Cálculo: Limites, Derivadas e Integrais
-
- Duvida na Integral
por rodrigo ff » Sex Mar 23, 2012 17:44
- 1 Respostas
- 1448 Exibições
- Última mensagem por DanielFerreira

Sex Mar 23, 2012 19:01
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] - Dúvida
por digsydinner » Ter Mar 27, 2012 10:37
- 3 Respostas
- 1753 Exibições
- Última mensagem por LuizAquino

Sex Mar 30, 2012 00:07
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida em Integral
por Cleyson007 » Qua Abr 18, 2012 16:35
- 1 Respostas
- 863 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 14:36
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.