por ativirginis » Seg Fev 27, 2012 15:02
(Ufpel 2000) Observando-se a variação da elongação A (acréscimo de comprimento em cm) de uma mola, em função de uma força F (em N) aplicada sobre a mola, obtiveram-se os resultados que podem ser representados pela função linear abaixo:

Nessas condições, se š = arc tan 5, pode-se afirmar que cada aumento de 0,25N na força corresponde a um aumento na elongação de
a) 0,50 cm.
b) 2,00 cm.
c) 1,25 cm.
d) 3,75 cm.
e) 2,25 cm.
-
ativirginis
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Fev 23, 2012 13:17
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por LuizAquino » Ter Fev 28, 2012 18:41
ativirginis escreveu:(Ufpel 2000) Observando-se a variação da elongação A (acréscimo de comprimento em cm) de uma mola, em função de uma força F (em N) aplicada sobre a mola, obtiveram-se os resultados que podem ser representados pela função linear abaixo:

- grafico.png (1.69 KiB) Exibido 4965 vezes
Nessas condições, se s = arc tan 5, pode-se afirmar que cada aumento de 0,25N na força corresponde a um aumento na elongação de
a) 0,50 cm.
b) 2,00 cm.
c) 1,25 cm.
d) 3,75 cm.
e) 2,25 cm.
Eu presumo que no texto original do exercício, ao invés de

, há na verdade

.
Dito isso, vejamos a resolução.
Sabemos que uma reta pode representar o gráfico de uma função polinomial do primeiro grau.
Sabemos ainda que essa função tem o formato f(x) = ax + b, sendo que
a é chamado de coeficiente angular e
b é chamado de coeficiente linear.
Sabemos que o coeficiente angular corresponde a tangente do ângulo formado entre a reta e o eixo x.
No caso da reta representada na figura, esse ângulo é

.
Como no exercício diz que

, temos que

.
Sendo assim, já sabemos que o coeficiente angular é 5. Ou seja, a função tem o formato f(x) = 5x + b.
Além disso, observando a figura percebemos que a reta passa pelo ponto (0, 0). Ou seja, temos que f(0)=0. Sendo assim, 5*0 + b = 0. Isso significa que b = 0.
Em resumo: a função é f(x)=5x.
A questão pergunta qual é o aumento da elongação caso a força aumente em 0,25 N.
Vamos supor que a força fosse k. Se ela aumentou 0,25 N, então ela passou a ser k + 0,25.
A elongação para x = k será f(k). Ou seja, será 5k.
Já a elongação para x = k + 0,25 será f(k+0,25). Ou seja, será 5(k+0,25).
Dessa forma, a elongação passou de 5k para 5(k+0,25).
Ou seja, o seu aumento (em cm) foi de:
5(k+0,25) - 5k =
= 5k + 1,25 - 5k
= 1,25
ObservaçãoEm uma função polinomial do primeiro grau, dada por f(x) = ax + b, quando a variável x aumenta c unidades, a variável y aumenta ac unidades.
Se a pessoa já souber essa informação, então esse exercício fica direto.
Como foi dado que

, deduzimos que o coeficiente angular é 5. Isto é, a = 5.
Portanto, como a variável x aumentou 0,25 N, a variável y irá aumentar 5*0,25 = 1,25 cm.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- como resolver essa questao
por Thassya » Qui Mai 21, 2009 23:25
- 1 Respostas
- 4110 Exibições
- Última mensagem por marciommuniz

Sex Mai 22, 2009 12:23
Trigonometria
-
- Como resolver essa questão?
por jmoura » Sáb Mar 31, 2012 23:58
- 3 Respostas
- 2489 Exibições
- Última mensagem por NMiguel

Dom Abr 01, 2012 19:13
Cálculo: Limites, Derivadas e Integrais
-
- Sem ideia de como resolver essa questão.
por jemourafer » Sáb Abr 28, 2012 00:38
- 1 Respostas
- 1498 Exibições
- Última mensagem por Russman

Sáb Abr 28, 2012 04:52
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver essa questão de probabilidade
por amanda s » Sex Nov 15, 2013 15:11
- 1 Respostas
- 2672 Exibições
- Última mensagem por DanielFerreira

Sex Nov 29, 2013 00:33
Probabilidade
-
- Como resolver essa equação?
por viniciusantonio » Qua Out 21, 2009 19:17
- 1 Respostas
- 4011 Exibições
- Última mensagem por carlos r m oliveira

Qui Out 22, 2009 14:55
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.