por Rosana Vieira » Sáb Fev 04, 2012 13:23
Gostaria que alguém me ajuda a resolver este exercício.
1. Considere o triângulo ABC, isósceles com base BC, onde os segmentos de reta BC, CD, DE, EF e FA são congruentes. Determine as medidas dos ângulos do triângulo ABC.
2. Um pedaço de papel cartão tem a forma de um triângulo isósceles, de altura igual a 12 cm. Foi dividido por uma reta paralela à base do triângulo, em dois pedaços de mesma área. Determine a altura da parte triangular obtida na secção.
Não conseguir colar os desenhos
-
Rosana Vieira
- Usuário Parceiro

-
- Mensagens: 74
- Registrado em: Qui Nov 17, 2011 00:11
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Arkanus Darondra » Sáb Fev 04, 2012 18:59
Rosana Vieira escreveu:Não conseguir colar os desenhos
Você pode hospedar sua imagem no site:
http://imageshack.us/Para isso, após criar e logar na sua conta, clique em browse e selecione sua imagem.
Você será redirecionada para outra página. No canto esquerdo você verá "Direct Link". Copie.
Volte ao fórum, pressione o botão "Img" que você vê acima de onde digita a mensagem e cole o link.
Para conferir, clique em "Prever".
Rosana Vieira escreveu:2. Um pedaço de papel cartão tem a forma de um triângulo isósceles, de altura igual a 12 cm. Foi dividido por uma reta paralela à base do triângulo, em dois pedaços de mesma área. Determine a altura da parte triangular obtida na secção.

Por razão de semelhança temos e considerando que, como as duas áreas são iguais, cada uma divide a área total ao meio:





-
Arkanus Darondra
- Colaborador Voluntário

-
- Mensagens: 187
- Registrado em: Seg Dez 26, 2011 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Cesar » Sáb Fev 04, 2012 20:34
Rosana Vieira escreveu:Gostaria que alguém me ajuda a resolver este exercício.
1. Considere o triângulo ABC, isósceles com base BC, onde os segmentos de reta BC, CD, DE, EF e FA são congruentes. Determine as medidas dos ângulos do triângulo ABC.
2. Um pedaço de papel cartão tem a forma de um triângulo isósceles, de altura igual a 12 cm. Foi dividido por uma reta paralela à base do triângulo, em dois pedaços de mesma área. Determine a altura da parte triangular obtida na secção.
Não conseguir colar os desenhos
amigo tudo bem?
gostaria de perguntar o seguinte, porque o lado direito esta elevado ao quadrado?
desculpe se estiver perguntando algo obvio
cesar
-
Cesar
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Sex Out 21, 2011 23:10
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por Arkanus Darondra » Sáb Fev 04, 2012 21:11
Cesar escreveu:amigo tudo bem?
gostaria de perguntar o seguinte, porque o lado direito esta elevado ao quadrado?
desculpe se estiver perguntando algo obvio
cesar
Olá Cesar. Tudo bem.
Recomendo que você dê uma olhada neste site:
http://www.cienciamao.usp.br/dados/t2k/ ... rquivo.pdf 
-
Arkanus Darondra
- Colaborador Voluntário

-
- Mensagens: 187
- Registrado em: Seg Dez 26, 2011 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Arkanus Darondra » Sáb Fev 04, 2012 22:07
Rosana, acabo de ver uma pergunta igual a sua no fórum. Segue a resolução:

Se
Propriedade: "
a medida de um ângulo externo é igual à soma das medidas dos 2 ângulos internos não adjacentes"
Então de acordo com os dados do enunciado e com a propriedade:



Logo:

º

º

-
Arkanus Darondra
- Colaborador Voluntário

-
- Mensagens: 187
- Registrado em: Seg Dez 26, 2011 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Geometria Plana
por claudia » Qui Out 23, 2008 16:11
- 1 Respostas
- 8527 Exibições
- Última mensagem por admin

Ter Out 28, 2008 16:47
Geometria Plana
-
- Geometria plana
por Rayanne07 » Qua Jan 13, 2010 17:40
- 3 Respostas
- 4450 Exibições
- Última mensagem por Rayanne07

Sex Jan 15, 2010 10:46
Geometria Plana
-
- Geometria Plana
por MelvinMyster » Sex Ago 13, 2010 10:07
- 1 Respostas
- 4643 Exibições
- Última mensagem por alexandre32100

Sex Ago 13, 2010 13:15
Geometria Plana
-
- Geometria plana
por Paulo A G » Qua Jan 26, 2011 16:11
- 0 Respostas
- 2388 Exibições
- Última mensagem por Paulo A G

Qua Jan 26, 2011 16:11
Geometria Plana
-
- geometria plana
por Abner » Seg Jan 31, 2011 17:53
- 3 Respostas
- 3420 Exibições
- Última mensagem por Abner

Ter Fev 01, 2011 17:31
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.