Gostaria de saber se estou resolvendo corretamente a questão abaixo.
--> Calcule
e
reais para que
.Estou resolvendo assim:
![({1+i\sqrt[2]{3}})^{2}+m=(1+i\sqrt[2]{3})(n) ({1+i\sqrt[2]{3}})^{2}+m=(1+i\sqrt[2]{3})(n)](/latexrender/pictures/50709373137a418093e845a43c687a7d.png)
![(1+i\sqrt[2]{3})(1+i\sqrt[2]{3})+m=(1+i\sqrt[2]{3})(n) (1+i\sqrt[2]{3})(1+i\sqrt[2]{3})+m=(1+i\sqrt[2]{3})(n)](/latexrender/pictures/2ce93c9f105fcd53cf787ba1b5a89c7f.png)
![1+i\sqrt[2]{3}+i\sqrt[2]{3}+{i}^{2}({\sqrt[2]{3}})^{2}+m=n+in\sqrt[2]{3} 1+i\sqrt[2]{3}+i\sqrt[2]{3}+{i}^{2}({\sqrt[2]{3}})^{2}+m=n+in\sqrt[2]{3}](/latexrender/pictures/b9a060eef24438a6ac8cd7699b31cd9f.png)
![1+2i\sqrt[2]{3}+(-3)+m=n(1+i\sqrt[2]{3}) 1+2i\sqrt[2]{3}+(-3)+m=n(1+i\sqrt[2]{3})](/latexrender/pictures/85187ce5c7e982362de3676b447009a0.png)
![1+2i\sqrt[2]{3}-3+m=n(1+i\sqrt[2]{3}) 1+2i\sqrt[2]{3}-3+m=n(1+i\sqrt[2]{3})](/latexrender/pictures/aea94fe8d1b2116cc7e4545c8d264b7d.png)
![-2(1-i\sqrt[2]{3})+m=n(1+i\sqrt[2]{3}) -2(1-i\sqrt[2]{3})+m=n(1+i\sqrt[2]{3})](/latexrender/pictures/863125ef85df1270ff2210444398a747.png)
![-2(1-i\sqrt[2]{3})=n(1+i\sqrt[2]{3})-m -2(1-i\sqrt[2]{3})=n(1+i\sqrt[2]{3})-m](/latexrender/pictures/c0b2e318a42afeb35c03d4424718498c.png)
![-2(\frac{1-i\sqrt[2]{3}}{1+i\sqrt[2]{3}})=n-m -2(\frac{1-i\sqrt[2]{3}}{1+i\sqrt[2]{3}})=n-m](/latexrender/pictures/01e5dfa47975fbed84f0b8767fe11035.png)
Estou encontrando essa equação:

Agradeço sua ajuda
Até mais
e
reais para que
.![({1+i\sqrt[2]{3}})^{2}+m=(1+i\sqrt[2]{3})(n) ({1+i\sqrt[2]{3}})^{2}+m=(1+i\sqrt[2]{3})(n)](/latexrender/pictures/50709373137a418093e845a43c687a7d.png)
![(1+i\sqrt[2]{3})(1+i\sqrt[2]{3})+m=(1+i\sqrt[2]{3})(n) (1+i\sqrt[2]{3})(1+i\sqrt[2]{3})+m=(1+i\sqrt[2]{3})(n)](/latexrender/pictures/2ce93c9f105fcd53cf787ba1b5a89c7f.png)
![1+i\sqrt[2]{3}+i\sqrt[2]{3}+{i}^{2}({\sqrt[2]{3}})^{2}+m=n+in\sqrt[2]{3} 1+i\sqrt[2]{3}+i\sqrt[2]{3}+{i}^{2}({\sqrt[2]{3}})^{2}+m=n+in\sqrt[2]{3}](/latexrender/pictures/b9a060eef24438a6ac8cd7699b31cd9f.png)
![1+2i\sqrt[2]{3}+(-3)+m=n(1+i\sqrt[2]{3}) 1+2i\sqrt[2]{3}+(-3)+m=n(1+i\sqrt[2]{3})](/latexrender/pictures/85187ce5c7e982362de3676b447009a0.png)
![1+2i\sqrt[2]{3}-3+m=n(1+i\sqrt[2]{3}) 1+2i\sqrt[2]{3}-3+m=n(1+i\sqrt[2]{3})](/latexrender/pictures/aea94fe8d1b2116cc7e4545c8d264b7d.png)
![-2(1-i\sqrt[2]{3})+m=n(1+i\sqrt[2]{3}) -2(1-i\sqrt[2]{3})+m=n(1+i\sqrt[2]{3})](/latexrender/pictures/863125ef85df1270ff2210444398a747.png)
![-2(1-i\sqrt[2]{3})=n(1+i\sqrt[2]{3})-m -2(1-i\sqrt[2]{3})=n(1+i\sqrt[2]{3})-m](/latexrender/pictures/c0b2e318a42afeb35c03d4424718498c.png)
![-2(\frac{1-i\sqrt[2]{3}}{1+i\sqrt[2]{3}})=n-m -2(\frac{1-i\sqrt[2]{3}}{1+i\sqrt[2]{3}})=n-m](/latexrender/pictures/01e5dfa47975fbed84f0b8767fe11035.png)


Cleyson007 escreveu:
não está multiplicando todo o lado direito da igualdade para passar pro lado direito dividindo. Certo?
e analisar os valores que atendem as condições (número real).

. Agora é só igualar a parte real com parte real e a imaginária com imaginária, tendo assim:


aqui, aprendemos de maneira interativa

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)