• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolva as seguintes equações logarítmicas

Resolva as seguintes equações logarítmicas

Mensagempor andersontricordiano » Seg Set 26, 2011 17:51

Resolva, em R, as seguintes equações:

a){log}_{3}(x+2)-{log}_{\frac{1}{3}}(x-6)={log}_{3}(2x-5)
b)log\frac{2}{3}x-5{log}_{9}x+1=0
c){log}_{2}x={log}_{x}2

As respostas são:

a)S={7}
b)S={{9,\sqrt[]{2}}}
c)S={\frac{1}{2},2}


Agradeço muito quem resolver esse calculo!
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Resolva as seguintes equações logarítmicas

Mensagempor MarceloFantini » Seg Set 26, 2011 20:59

Na primeira, aplique a propriedade que \log_{\frac{1}{a}} b = - \log_a b e também \log_c a + \log_c b = \log_c (ab), lembrando das condições de existência.

No segundo não consigo entender a expressão.

No terceiro, use a propriedade \log_a b = \frac{\log_c b}{\log_c a}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Resolva as seguintes equações logarítmicas

Mensagempor DanielFerreira » Dom Jan 08, 2012 16:52

andersontricordiano escreveu:Resolva, em R, as seguintes equações:

a){log}_{3}(x+2)-{log}_{\frac{1}{3}}(x-6)={log}_{3}(2x-5)
As respostas são:

a)S={7}

Agradeço muito quem resolver esse calculo!

Passando para a base 3:
log_{3} (x + 2) - \frac{log_{3} (x - 6)}{log_{3} \frac{1}{3}} = log_{3} (2x - 5)

log_{3} (x + 2) - \frac{log_{3} (x - 6)}{- 1} = log_{3} (2x - 5)

log_{3} (x + 2) + log_{3} (x - 6) = log_{3} (2x - 5)

log_{3} [(x + 2)(x - 6)] = log_{3} (2x - 5)

(x + 2)(x - 6) = (2x - 5)

x^2 - 4x - 12 = 2x - 5

x^2 - 6x - 7 = 0

(x - 7)(x + 1) = 0

x - 7 = 0

x = 7

x não pode ser igual a 1, pois (x - 6) > 0
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Resolva as seguintes equações logarítmicas

Mensagempor DanielFerreira » Dom Jan 08, 2012 17:21

andersontricordiano escreveu:Resolva, em R, as seguintes equações:
c){log}_{2}x={log}_{x}2

As respostas são:

c)S={\frac{1}{2},2}

Passemos p/ a base 2:
\frac{log_{2} x}{log_{2} 2} = \frac{log_{2} 2}{log_{2} x}

\frac{log_{2} x}{1} = \frac{1}{log_{2} x}

(log_{2} x)^2 = 1

log_{2} x = 1 e log_{2} x = - 1

2^1 = x e 2^{- 1} = x

x = 2 e x = \frac{1}{2}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?