• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivar expressão trigonometrica

Derivar expressão trigonometrica

Mensagempor joaofonseca » Qua Nov 30, 2011 22:29

Dada a seguinte expressão:

\frac{1}{x^2}\cdot sin^2(\frac{x}{2})

Encontre a formula da derivada.

Eu fiz assim:

\left (\frac{1}{x^2} \right )' \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left (sin^2 \left (\frac{x}{2}\right)\right)'

\frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot \left(sin \left(\frac{x}{2}\right)\right)' \right]

\frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot cos\left(\frac{x}{2}\right)\cdot \left(\frac{x}{2}\right)' \right]

\frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot cos\left(\frac{x}{2}\right)\cdot \frac{2}{4} \right]

Será que está bem?Alguém pode conferir?
Isto de calcular a derivada complica-se quando é preciso misturar a regra do quociente, do produto e da cadeia.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivar expressão trigonometrica

Mensagempor MarceloFantini » Qui Dez 01, 2011 01:45

Está certo, mas simplifique \frac{-2x}{x^4} para \frac{-2}{x^3}, não era necessário colocar \frac{2}{4}, embora não está errado a derivada de \frac{x}{2} é \frac{1}{2}, não havia necessidade de multiplicar numerador e denominador por 2.

Poderia ter notado que \frac{1}{x^2} = x^{-2} e então (x^{-2})' = -2x^{-3} = \frac{-2}{x^{3}}. Uma forma interessante seria notar que \sin^2 \left( \frac{x}{2} \right) = \frac{1 - \cos \left( 2 \cdot \frac{x}{2} \right)}{2}, daí \left( \sin^2 \left( \frac{x}{2} \right) \right)' = \left( \frac{1 - \cos x}{2} \right)' = \frac{ \sin x}{2}.

Note que é consistente, uma vez que 2 \cdot \sin \left( \frac{x}{2} \right) \cdot \cos \left( \frac{x}{2} \right) = \sin \left( 2 \cdot \frac{x}{2} \right) = \sin x.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)