• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Matrizes e Determinantes]

[Matrizes e Determinantes]

Mensagempor angela sofia Pereira » Sáb Nov 12, 2011 11:39

considerando a seguinte matriz pede-se para calcular o determinante da matriz como função de x e y por expansão de Laplace, explicitando os pontos x e y para os quais a matriz é invertivel. Já tentei resolver de várias formas mas não chego a nenhuma conclusão, pedia um pequeno auxilio para solucionar esta questão.
\begin{pmatrix}
    1 & x & 2  \\ 
    3 & y & 2  \\
    2 & 1 & 6  
\end{pmatrix}
angela sofia Pereira
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Nov 12, 2011 10:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: matemática
Andamento: cursando

Re: [Matrizes e Determinantes]

Mensagempor LuizAquino » Sáb Nov 12, 2011 12:27

angela sofia Pereira escreveu:considerando a seguinte matriz pede-se para calcular o determinante da matriz como função de x e y por expansão de Laplace, explicitando os pontos x e y para os quais a matriz é invertivel. Já tentei resolver de várias formas mas não chego a nenhuma conclusão, pedia um pequeno auxilio para solucionar esta questão.
\begin{pmatrix} 1 & x & 2 \\ 3 & y & 2 \\ 2 & 1 & 6 \end{pmatrix}


Por favor, envie a sua resolução para que possamos identificar o erro.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Matrizes e Determinantes]

Mensagempor angela sofia Pereira » Sáb Nov 12, 2011 15:17

LuizAquino escreveu:
angela sofia Pereira escreveu:considerando a seguinte matriz pede-se para calcular o determinante da matriz como função de x e y por expansão de Laplace, explicitando os pontos x e y para os quais a matriz é invertivel. Já tentei resolver de várias formas mas não chego a nenhuma conclusão, pedia um pequeno auxilio para solucionar esta questão.
\begin{pmatrix} 1 & x & 2 \\ 3 & y & 2 \\ 2 & 1 & 6 \end{pmatrix}


Por favor, envie a sua resolução para que possamos identificar o erro.

boa tarde, a minha duvida é se o que é pedido é apenas o determinante desta matriz que já calculei e dava 2y-14x+4 ou se em primeiro lugar tenho de achar as variáveis x e y de n sei como fazer, no manual não encontro nada que se assemelhe ou então não estou mesmo a perceber, visualizei em outros sitios e existia uma forma de calcular as variáveis apartir da transpota ou seja a matriz x se esta fosse simétrica seria igual á sua transposta e ficaria com x= 3 e y= 0 mas os valores da matriz teriam de ser identicos à transposta, e não me dá isso, e tentei pela forma antisimétrica e tambem os valores não são idênticos, e fiquei nesse impasse, pelo o que penso eu tenho de saber primeiro os valores de x e y só não estou a ver como faze-lo. Não saberei se esta matriz é invertivel se não tiver o valor do determinante que terá de ser diferente de zero. Porque a pergunta b tambem refere diversos valores para x e y e pede para justificar em qual deles é invertivel e após as diversas contas não me dá menhum valor igual ao pretendido, peço desculpa desde já de não colocar aqui todas as contas e são muitas mas a minha prática em latex é muito pouca e levaria muito tempo.se esta matriz não tivesse as váriáveis o resto eu sei fazer, mas realmente bloquiei nesta parte. Agradeço desde já a vossa disponibilidade e muito boa tarde, Cumprimentos
angela sofia Pereira
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Nov 12, 2011 10:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: matemática
Andamento: cursando

Re: [Matrizes e Determinantes]

Mensagempor LuizAquino » Sáb Nov 12, 2011 19:06

angela sofia Pereira escreveu:(...) a minha duvida é se o que é pedido é apenas o determinante desta matriz que já calculei e dava 2y-14x+4 ou se em primeiro lugar tenho de achar as variáveis x e y de n sei como fazer (...)


Na primeira parte do enunciado do exercício está escrito: "considerando a seguinte matriz pede-se para calcular o determinante da matriz como função de x e y por expansão de Laplace (...)"

Portanto, primeiro pede-se para calcular o determinante por expansão de Laplace. Nesse caso, você irá obter:

d = 2y - 14x + 4

Já na segunda parte do enunciado do exercício está escrito: "(...) explicitando os pontos x e y para os quais a matriz é invertível. (...)"

Portanto, em segundo lugar pede-se para determinar que pontos (x, y) tornam a matriz inversível.

Para possuir inversa, o determinante dessa matriz deve ser diferente de zero. Ou seja, deve ocorrer:

d\neq 0 \Rightarrow 2y - 14x + 4 \neq 0

Nesse caso, os pontos (x, y) para os quais a matriz possui inversa estão no conjunto:

S = \{(x,\,y)\in \mathb{R}^2 \, \mid \, y \neq  7x - 2\}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Matrizes e Determinantes]

Mensagempor angela sofia Pereira » Sáb Nov 12, 2011 21:48

boa noite, agradeço imenso a ajuda prestada agora já percebi o que era pedido.
Cumprimentos
Ângela Pereira
angela sofia Pereira
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Nov 12, 2011 10:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: matemática
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D