por cris_minims » Qua Nov 09, 2011 15:58
Olá a todos... Estou no 1º ano do meu curso e tenho uma disciplina de algebra linear. Neste momento estou a resolver alguns exercícios relativos à eliminação de gauss e tenho uma pequena dúvida: Quando é dado um sistema em que a primeira equação tem a ordem correcta (x,y,z) , mas a segunda ja vem, por exemplo, com (y,x,z), tem de se ordenar antes de começar a eliminação, ou começa-se a fazer exactamente conforme é apresentado o sistema?
Obrigado desde ja
-
cris_minims
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Nov 09, 2011 15:53
- Formação Escolar: EJA
- Andamento: cursando
por MarceloFantini » Qua Nov 09, 2011 17:22
A ordenação é apenas para evitar confusões e que você não subtraia erroneamente x's de y's e vice-versa. Logo, convém arrumar o sistema para que as variáveis fiquem alinhados e fujamos de confusões.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Eliminação Gauss Jordan
por kassya » Ter Abr 22, 2014 16:54
- 0 Respostas
- 2565 Exibições
- Última mensagem por kassya

Ter Abr 22, 2014 16:54
Álgebra Linear
-
- Algebra Linear: método de Eliminação de Gauss (3)
por Caeros » Ter Out 12, 2010 16:15
- 1 Respostas
- 3422 Exibições
- Última mensagem por Caeros

Sáb Out 16, 2010 20:59
Álgebra
-
- Algebra Linear: método de Eliminação de Gauss (2)
por Caeros » Ter Out 12, 2010 12:27
- 2 Respostas
- 3926 Exibições
- Última mensagem por Caeros

Sáb Out 30, 2010 10:59
Álgebra
-
- Resolução de sistemas (método de Gauss-Jordan)
por Danilo » Qua Nov 28, 2012 20:08
- 1 Respostas
- 3003 Exibições
- Última mensagem por e8group

Qua Nov 28, 2012 20:42
Sistemas de Equações
-
- [Sistemas Lineares] Precisão do Método de Gauss-Seidel
por VFernandes » Qui Out 06, 2011 13:50
- 0 Respostas
- 1042 Exibições
- Última mensagem por VFernandes

Qui Out 06, 2011 13:50
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.