por flima » Sáb Ago 27, 2011 14:57
Olá para todos,
Segue o enunciado:

, qual o valor de

Resposta: -2
Eu tentei substituir

por

e desenvolver a equação, mas não rolou! Voiltando ao problema inicial, imaginei que a saída era encontrar um fator de evidência para o numerador que fosse igual ao denominador

, assim excluo o zero quando aplicar o limite. O problema é que tentei muita coisa e não consegui. Alguém pode ajudar?

-
flima
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Ago 27, 2011 14:43
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: engenharia quimica
- Andamento: formado
por LuizAquino » Sáb Ago 27, 2011 17:34
DicaSome e subtraia a expressão

no numerador:

Em seguida, separe em dois limites:

Agora tente terminar de resolver o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Caradoc » Sáb Ago 27, 2011 18:22
Como é uma indeterminação do tipo 0/0, você também pode tentar usar a regra de L'Hopital.
-
Caradoc
- Usuário Dedicado

-
- Mensagens: 37
- Registrado em: Qui Dez 16, 2010 17:17
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por flima » Sáb Ago 27, 2011 18:23
Ai que bom, agora foi!!!! Obrigada.
-
flima
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Ago 27, 2011 14:43
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: engenharia quimica
- Andamento: formado
por LuizAquino » Sáb Ago 27, 2011 20:04
Caradoc escreveu:Como é uma indeterminação do tipo 0/0, você também pode tentar usar a regra de L'Hopital.
O uso indiscriminado da Regra de L'Hospital pode "enferrujar" a capacidade de manipulação algébrica do estudante.
Por isso, é bom deixar essa regra para os casos específicos nos quais uma manipulação algébrica "elementar" não resolve o limite.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por VtinxD » Dom Ago 28, 2011 03:17
Perceba que isto é uma derivada no ponto

da função f(x),aplicando uma mudança de variavel

para ficar na forma mais convencional ou até olhando como

.E percebendo isto é só usar a regra do produto e avaliar no ponto

-
VtinxD
- Usuário Parceiro

-
- Mensagens: 64
- Registrado em: Dom Ago 15, 2010 18:29
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Bacharelado em Matematica
- Andamento: cursando
por LuizAquino » Dom Ago 28, 2011 11:36
VtinxD escreveu:Perceba que isto é uma derivada no ponto

da função f(x),aplicando uma mudança de variavel

para ficar na forma mais convencional ou até olhando como

.E percebendo isto é só usar a regra do produto e avaliar no ponto

Bem, isso só pode ser feito se já tivesse sido estudado o conceito de derivadas e suas regras operatórias. Mas, o que fazer se não houvesse esse estudo? Perceba que nem essas regras e nem a Regra de L'Hospital poderiam ser aplicadas.
Veja que esse exercício poderia estar perfeitamente na seção de um livro que falasse apenas sobre limite (muito antes de falar sobre derivada, por exemplo).
Nesse contexto, é fundamental saber manipular algebricamente o limite para poder resolvê-lo, sem necessidade de usar de alguma forma o conceito de derivada.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Mais um limite
por Psilocybe » Ter Mai 31, 2011 20:33
- 2 Respostas
- 1192 Exibições
- Última mensagem por carlosalesouza

Qua Jun 01, 2011 00:27
Cálculo: Limites, Derivadas e Integrais
-
- Mais uma de sequência
por Molina » Dom Mai 03, 2009 06:07
- 4 Respostas
- 2742 Exibições
- Última mensagem por lucasguedes

Ter Jul 07, 2009 21:08
Desafios Difíceis
-
- MAIS UMA QUESTÃO DE G.A
por GABRIELA » Ter Set 29, 2009 18:57
- 3 Respostas
- 2392 Exibições
- Última mensagem por Elcioschin

Qua Set 30, 2009 20:54
Geometria Analítica
-
- Mais uma questão
por GABRIELA » Seg Dez 07, 2009 17:16
- 1 Respostas
- 2096 Exibições
- Última mensagem por Elcioschin

Seg Dez 07, 2009 19:23
Estatística
-
- Mais um desafio..
por victoreis1 » Seg Nov 22, 2010 21:26
- 3 Respostas
- 2396 Exibições
- Última mensagem por Molina

Seg Nov 22, 2010 23:54
Desafios Difíceis
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.