• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Ter Ago 02, 2011 03:09

Não consigo resolver este exercício de limite de função composta.

\lim_{x\rightarrow1}\frac{\sqrt[3]{x+7}-2}{x-1}


Alguém poderia dar uma dica por onde começar?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 09:15

Olá Claudin,

Vou tentar fazer este como exemplo depois você tente os demais.

Façamos o seguinte,
u=\sqrt[3]{x+7}\therefore x=u^3-7, veja que como x\to 1 então u\to 2, pois u=\sqrt[3]{1+7}=2.

Assim temos,
\lim_{x\rightarrow1}\frac{\sqrt[3]{x+7}-2}{x-1}=\lim_{u\rightarrow2}\frac{u-2}{u^3-8}

Sabemos que:
a^3-b^3=(a-b)(a^2+ab+b^2)

Logo,
\lim_{u\rightarrow2}\frac{\cancel{(u-2)}}{\cancel{(u-2)}(u^2+2u+4)}, pois u\neq 2.

Portanto,
\lim_{u\rightarrow2}\frac{1}{u^2+2u+4}=\frac{1}{4+4+4}=\boxed{\frac{1}{12}}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 15:46

FilipeCaceres escreveu:Façamos o seguinte,
u=\sqrt[3]{x+7}\therefore x=u^3-7, veja que como x\to 1 então u\to 2, pois u=\sqrt[3]{1+7}=2.


Sendo u=\sqrt[3]{x+7}, como concluimos que x=u^3-7 ?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 17:18

Claudin escreveu:Sendo u=\sqrt[3]{x+7}, como concluimos que x=u^3-7 ?


Basta isolar x,
u=\sqrt[3]{x+7}
u^3=x+7

Logo,
x=u^3-7

:y:
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 17:21

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.