• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(Fuvest) Relações Métricas em Triângulos Quaisquer - Ajudem!

(Fuvest) Relações Métricas em Triângulos Quaisquer - Ajudem!

Mensagempor kamillanjb » Sex Jul 22, 2011 15:00

(Fuvest 93) A corda comum de dois círculos que se interceptam é vista de seus centros sob ângulos de 90° e 60°, respectivamente, como é mostrado na figura a seguir. Sabendo-se que a distância entre seus centros é igual a (?3)+1, determine os raios dos círculos.

Gente, por favor me ajude! Meus resultados não estão batendo!!
Anexos
jogar fora.jpg
jogar fora.jpg (7.86 KiB) Exibido 6832 vezes
kamillanjb
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Fev 16, 2011 10:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (Fuvest) Relações Métricas em Triângulos Quaisquer - Aju

Mensagempor FilipeCaceres » Sex Jul 22, 2011 21:18

Olá kamillanjb,
Fuvest_93.png
Fuvest_93.png (7.05 KiB) Exibido 6818 vezes


Veja a figura e perceba que podemos escrever as seguintes relações:
x=rsin45=Rsin30
x=\frac{r\sqrt{2}}{2}=\frac{R}{2}
R=r\sqrt{2}

y=Rcos30=\frac{R\sqrt{3}}{2}

Temos que,
x+y=\sqrt{3}+1

\frac{r\sqrt{2}}{2}+\frac{R\sqrt{3}}{2}=\sqrt{3}+1

r\sqrt{2}+r\sqrt{6}=2(\sqrt{3}+1)

r=\frac{2(\sqrt{3}+1)}{(\sqrt{6}+\sqrt{2})}.\frac{(\sqrt{6}-\sqrt{2})}{(\sqrt{6}-\sqrt{2})}=\frac{2.2\sqrt{2}}{4}

\boxed{r=\sqrt{2}\therefore\,R=2}

Se alguém tiver uma forma mais fácil. :-D

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.