por santiago alves » Ter Jul 12, 2011 13:45
Olá pessoal, estou com dificuldade para resolver este exercicio, em particular pela ambiguidade existente na explicação.
4-) A diferença entre as idades de duas pessoas é 15 anos.
Daqui a dois anos a mais velha terá o dobro da idade da mais nova.
Qual é a idade de cada uma?
bem...
eu consegui encontrar uma resposta q diverge com o sinal de uma das respostas do gabarito.
gostaria q tentassem resolver ele sem q eu poste as respostas do livro para ver se o raciocio é o mesmo q o q tive inicialmente
e saber se o livro esta errado...
qualquer coisa eu posto a resposta depois.
vlws galera!!!
-
santiago alves
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Abr 20, 2011 11:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Guill » Ter Jul 12, 2011 14:08
Idade da pessoa 1 = x
Idade da pessoa 2 = y
{x - y = 15
Se daqui a dois anos a mais velha terá o dobro da outra:
{x + 2 = 2.(y + 2)
Isso porque ambas as idades avançam 2 anos. Por Sistema:
{x - y = 15
{x + 2 = 2.(y + 2)
{x - y = 15
{x + 2 = 2y + 4
{x - y = 15
{x - 2y = 2
{x - y = 15
{x - 2y = 2 (-1)
{x - y = 15
{-x + 2y = -2
y = 13
Sendo assim:
x - y = 15
x = 28
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por santiago alves » Ter Jul 12, 2011 14:23
vlws cara...
as resposta conferem com a do livro!!!!
brigado pela ajuda..
-
santiago alves
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Abr 20, 2011 11:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Livro: Matematica basica para ensino Superior. LOGARITMOS
por santiago alves » Sex Jul 15, 2011 00:13
- 3 Respostas
- 3229 Exibições
- Última mensagem por LuizAquino

Sex Jul 15, 2011 10:44
Logaritmos
-
- Livro: Matematica basica para ensino fundamental. pg. 55 ex1
por santiago alves » Sex Jul 08, 2011 08:46
- 2 Respostas
- 2616 Exibições
- Última mensagem por santiago alves

Sex Jul 08, 2011 10:46
Polinômios
-
- [Gráficos de funções]matemática do ensino superior
por Breno94 » Dom Abr 12, 2015 22:13
- 1 Respostas
- 2330 Exibições
- Última mensagem por nakagumahissao

Dom Jul 19, 2015 11:59
Funções
-
- [DICA] Livro de Matemática Ensino Fundamental
por invader_zim » Seg Fev 11, 2013 14:54
- 9 Respostas
- 7769 Exibições
- Última mensagem por alex_08

Ter Fev 12, 2013 18:01
Álgebra Elementar
-
- [Probabilidade Ensino Superior]
por yuricastilho » Sáb Abr 19, 2014 20:16
- 1 Respostas
- 2993 Exibições
- Última mensagem por paulo testoni

Dom Jun 29, 2014 00:14
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.