• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites descobrindo Valores

Limites descobrindo Valores

Mensagempor Maykids » Sáb Jul 09, 2011 01:19

então dando mais uma olhada aqui para a avaliação final:
me deparei com esses 2 exercicios:
1-Para a função f definida por : f(x) = -\sqrt[]{(2-x)}, x<1
ax+b se x\leq x < 2
\left| x^2-7x+12 \right|, x\geq 2

faço F(1) aplico os limites laterais, só que eu erro ai, pois eu acho a+b e depois nao sei como sabe o valor de cada,

2- verificar se uma Função é continua em toda reta R:
ex: f(x) = \frac{sen(x^2-4)}{x+2}
att,
Maycon
Maykids
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Mar 20, 2011 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de computação
Andamento: cursando

Re: Limites descobrindo Valores

Mensagempor LuizAquino » Ter Jul 12, 2011 11:36

O texto do exercício 1 não está completo. Ele deve ser algo como:

Determine as constantes a e b para que a função f definida por f(x) = \begin{cases}- \sqrt{2 - x};\,x < 1 \\ ax + b;\, 1 \leq x < 2 \\ |x^2 -7x + 12|;\,x\geq 2\end{cases} seja contínua em todo \mathbb{R}.

Nesse caso, você irá determinar as constantes ao notar que f deve ser tal que:
(i) \lim_{x\to 1^-}f(x) = \lim_{x\to 1^+}f(x) = f(1)

(ii) \lim_{x\to 2^-}f(x) = \lim_{x\to 2^+}f(x) = f(2)

Já no exercício 2, note que a função não está definida em x = -2.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}