• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequações com soma de módulos

Inequações com soma de módulos

Mensagempor Caroline Oliveyra » Dom Jul 10, 2011 13:03

Oie!

Gente, eu to com uma dúvida aqui a respeito de uma inequação que envolve soma de módulos. A inequação é: \left|x + 1 \right| - \left|2 - x \right| > 3.

Eu não estou conseguindo fazer essa soma. Tentei aplicar as propriedae de módulo, mas o x anulou... Tenho um monte de questões assim pra resolver, mas tô meio perdida. Eu sempre coloco aqui o modo como eu tentei resolver, mas é que dessa vez eu não tô nem sabendo começar... *-)

Tem um outro tipo de inequação modular aqui que eu também não tô sabendo fazer... Acho que meu problema é com o módulo!! :)

\left|\frac{x^2 - 5x +6}{x^2 - 11x + 30} \right| > 2

Se alguém puder me ajudar agredeço muitíssimo!!

Se puder colocar a resolução completa pra eu poder acompanhar também agradeço muito!!! :-D

Beijos!!
"... então não importa se você é antílope ou leão; amanheceu, comece a correr."
Caroline Oliveyra
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Jun 19, 2011 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e de Materiais
Andamento: cursando

Re: Inequações com soma de módulos

Mensagempor giulioaltoe » Dom Jul 10, 2011 21:27

na primeira inequação ao igualar a equação tanto pro < -3 quanto pro >3 e um dos casos voce tira o modulo no sinal oposto, e nesse caso ele nao se anula, assim vai achar um resultado, se o outro resultado X se anula e porque so tem a imagem pra um dos valores, e nao pros dois!
a segunda inequação e so aplicar as condiçoes de existencia... fazer um calculo pra (inequação)>2 e outro para (inequação)<-2 :P
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Inequações com soma de módulos

Mensagempor MarceloFantini » Seg Jul 11, 2011 04:16

Giulio, não é bem assim. Note que há dois módulos, portanto não se deve fazer isso. Como proceder:

1) Analise os sinais dos módulos individualmente:

|x+1| é zero quando x=-1, positivo quando x > -1 e negativo quando x < -1
|2-x| é zero quando x=2, positivo quando x < 2 e negativo quando x > 2

2) Monte os intervalos e teste:

Primeiro intervalo: x<-1 \Rightarrow -(1+x) - (2-x) > 3 \Rightarrow -3 > 3

Portanto nesse primeiro intervalo não existe solução.

Segundo intervalo: -1 < x < 2 \Rightarrow 1+x - (2-x) > 3 \Rightarrow 2x -1 > 3 \Rightarrow 2x > 4 \Rightarrow x > 2

Novamente resultado inválido.

Terceiro intervalo: x > 2 \Rightarrow 1+x - (-(2-x)) > 3 \Rightarrow 1+x + 2 - x > 3 \Rightarrow 3 > 3

Outra afirmação inválida.

Pelo que notei, não existe intervalo onde está inequação esteja satisfeita. Tem certeza que digitou certo? Para conferir digitei no wolfram e também disse que era falsa.

Na segunda inequação, procure achar as raízes das equações e analise quando a fração é positiva ou negativa, repetindo os passos: veja os intervalos e teste quais os que tem respostas válidas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Inequações com soma de módulos

Mensagempor giulioaltoe » Ter Jul 12, 2011 00:11

essa questao so possui resposta de uma das equaçoes, ta na minha lista de exercicio tbm :)
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Inequações com soma de módulos

Mensagempor giulioaltoe » Ter Jul 12, 2011 01:45

a resolução ai... nao fiz a resolução da outra condiçao pois o delta da negativo sendo assim nao existe imagem... o valor fica meio quabrado mas acredito que seja isso!!
Anexos
IMG0001.jpg
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Inequações com soma de módulos

Mensagempor Caroline Oliveyra » Ter Jul 12, 2011 14:30

Oi!!

Obrigada!! Eu vou ver aki se acompanho o raciocínio e resolvo!!!

Beijos pros dois!! =D
"... então não importa se você é antílope ou leão; amanheceu, comece a correr."
Caroline Oliveyra
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Jun 19, 2011 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e de Materiais
Andamento: cursando

Re: Inequações com soma de módulos

Mensagempor MarceloFantini » Ter Jul 12, 2011 15:24

Giulio, novamente o modo de resolver não é este. Siga os passos que eu disse: analise o sinal de \left| \frac{x^2 -5x +6}{x^2 -11x +30} \right| para depois verificar caso a caso e retirar o módulo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Inequações com soma de módulos

Mensagempor Caroline Oliveyra » Qua Jul 13, 2011 14:56

Oi Marcelo!

A primeira equação eu entendi como faz,obrigada!!

Na segunda é que eu ainda não acompanhei seu raciocínio. Você tirou o módulo antes de fazer as operações com a fração? Pelo que eu entendi do seu desenvolvimento você passou o 2 para o primeiro membro, subtraindo-o da fração modular:

\left|\frac{x^2 - 5x +6}{x^2 - 11x + 30} \right| > 2  \Rightarrow  \left|\frac{x^2 - 5x +6}{x^2 - 11x + 30} \right| - 2 > 0

Eu não entendi porque depois daí você tirou o módulo. O resto eu entendi, mas não sei que propriedade você usou pra tirar o módulo da fração. No seu desenvolvimento eu não consegui perceber como você fez isso... Você poderia me explicar? :-D

Beijos e obrigada de novo!!
"... então não importa se você é antílope ou leão; amanheceu, comece a correr."
Caroline Oliveyra
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Jun 19, 2011 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e de Materiais
Andamento: cursando

Re: Inequações com soma de módulos

Mensagempor LuizAquino » Qua Jul 13, 2011 15:52

Olá Caroline Oliveyra,

Para sanar suas dúvidas, eu recomendo que você revise o conteúdo de inequações modulares.

Um lugar interessante de começar a sua revisão é no canal do Nerckie no YouTube:
http://www.youtube.com/nerckie

Procure pelas vídeo-aulas "Matemática - Aula 27 - Inequação Modular".
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequações com soma de módulos

Mensagempor Caroline Oliveyra » Qua Jul 13, 2011 16:22

Minha internet é discada... =(

Mas obrigada, eu vou ver se assisto esse vídeo em algum lugar! kkkkkkkkkkkkk
"... então não importa se você é antílope ou leão; amanheceu, comece a correr."
Caroline Oliveyra
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Jun 19, 2011 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e de Materiais
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?