• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise Combinatória

Análise Combinatória

Mensagempor sileust » Dom Jul 10, 2011 13:01

Prezados participantes do fórum.

Antes de nada é um privilégio participar, pela primeira vez, deste ambiente!

Gostaria que alguém pudesse me ajudar com uma dúvida sobre o critério adotado na resolução de dois exemplos (resolvidos pelos autores) do livro Introdução à Análise Combinatória, de José Plínio O. Santos e outros, sobre princípio multiplicativo:

Exemplo 2.14 Há 12 moças e 10 rapazes, onde 5 deles (3 moças e 2 rapazes) são filhos da mesma mãe e os restantes não possuem parentesco. Quantos são os casamentos possíveis?

Resolução: considerando as moças (3) que possuem irmãos (2), há: 3.8 = 24 casamentos possíveis.
Considerando as moças (9) que não possuem irmãos, há: 9.10 = 90 casamentos possíveis. Portanto, há 24 + 90 = 14 casamentos possíveis.

Exemplo 2.27 De quantas maneiras 12 moças e 12 rapazes podem formar pares para uma dança?

Resolução: A primeira moça tem 12 possibilidades para escolher seu par. A segunda moça tem 11 possibilidades; a terceira moça tem 10 possibilidades, e assim sucessivamente, de modo que a décima segunda moça terá 1 possibilidade de escolha. Portanto, pelo princípio multiplicativo, podemos concluir que há 12. 11. 10. 9. 8. . . 1 = 12! Maneiras de esses pares serem formados.

Minha pergunta é a seguinte: por que, em ambos os casos, tratando-se de formação de pares (afinal o casamento se faz aos pares assim como as duplas de dança), apresentam maneiras distintas de se resolver? No primeiro caso, tomou-se o número do grupamento de moças disponíveis, em cada caso, e multiplicou-se pelo número do grupamento de rapazes, enquanto que, no segundo exemplo, se houvesse sido aplicado o mesmo critério, a solução teria sido 12 x 12 = 144. Se fizermos a árvore de probabilidade encontra-se este resultado. Acrescenta-se ainda que, no segundo caso, a ordem não interessa, então por que foi calculado como o fatorial (12!) do número de um dos grupamentos? Afinal de contas, para fins de contagem, o casal João e Maria é o mesmo Maria e João.

Grato,

Sílvio.
sileust
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jul 10, 2011 12:54
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Análise Combinatória

Mensagempor my2009 » Sex Jul 29, 2011 13:41

Alguem pode nos ajudar ?
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D