• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Sen - Dúvida Resolução

Função Sen - Dúvida Resolução

Mensagempor jamiel » Sáb Jul 02, 2011 17:47

Determine m para que exista o arco x, satisfazendo as igualdades:

d)

\frac{5m - 2}{1 - m}


\left(-1 \leq \frac{5m - 2}{1 - m} \leq 1 \right)

Resolução:

\left(-1 \preceq \frac{5m - 2 }{1 - m}\right)


\left(\frac{-5m + 2}{-1 + m} -1 \leq 0 \right)


\left( \frac{-4m + 1}{1 - m} \leq 0 \right)

m \geq \frac{1}{4}

Mas no gabarito consta \frac{1}{4}\leq m \leq \frac{1}{2}



Na minha resolução, ficaria

\frac{1}{4}\leq m \leq \frac{1}{4}

Fiquei sem entender essa. Alguém para dar uma dica?
Editado pela última vez por jamiel em Sáb Jul 02, 2011 18:58, em um total de 1 vez.
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função Sen - Dúvida Resolução

Mensagempor MarceloFantini » Sáb Jul 02, 2011 18:55

Não aparece a desigualdade. Por favor conserte. :)
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função Sen - Dúvida Resolução

Mensagempor jamiel » Sáb Jul 02, 2011 18:59

Se vc se referiu a desigualdade total, tá lá na parte de cima, consertei!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função Sen - Dúvida Resolução

Mensagempor jamiel » Sáb Jul 02, 2011 19:06

A outra parte " m?1/2", eu fiz da mesma forma


\left(\frac{5m - 2}{1 - m} \leq 1 \right)


\left(\frac{5m - 2}{1 - m} -1\leq 0  \right)


\left(\frac{(5m - 2)-(-1(1 - m))}{-1(1 - m)} \right)


\left(\frac{4m - 1}{-1 + m}\leq 0 \right)


m \leq \frac{1}{4}


Essa seria a outra parte da desigualdade!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função Sen - Dúvida Resolução

Mensagempor MarceloFantini » Sáb Jul 02, 2011 19:14

Você está errando em algumas contas, veja:

-1 \leq \frac{5m-2}{1-m} \iff \frac{5m-2}{1-m} +1 \geq 0 \iff \frac{5m-2 + 1(1-m)}{1-m} \geq 0

\iff \frac{4m -1}{1-m} \geq 0

Assim, m \geq \frac{1}{4}. Para o outro lado:

\frac{5m-2}{1-m} \leq 1 \iff \frac{5m-2}{1-m} -1 \leq 0 \iff \frac{5m-2 - (1-m)}{1-m} \leq 0

\iff \frac{6m-3}{1-m} \leq 0

Logo, 6m-3 \leq 0 \iff 6m \leq 3 \iff m \leq \frac{1}{2}

Note que m \neq 1 sempre, mas como não está no intervalo, não há problema.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função Sen - Dúvida Resolução

Mensagempor jamiel » Sáb Jul 02, 2011 19:27

Mas, vc não multiplicou o "-1" na segunda desigualdade. Continuo sem entender!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função Sen - Dúvida Resolução

Mensagempor MarceloFantini » Sáb Jul 02, 2011 19:31

Claro que multipliquei, você não está percebendo. Veja:

\frac{5m -2}{1-m} -1 \leq 0 \iff \frac{5m-2}{1-m} + (-1) \frac{1-m}{1-m} \leq 0

\iff \frac{5m -2 + (-1)(1-m)}{1-m} \leq 0 \iff \frac{5m-2 - (1-m)}{1-m} \leq 0

\iff \frac{5m -2 -1 - (-m)}{1-m} \leq 0 \iff \frac{5m -3 +m}{1-m} \leq 0

\iff \frac{6m-3}{1-m} \leq 0

Percebeu?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função Sen - Dúvida Resolução

Mensagempor jamiel » Sáb Jul 02, 2011 19:42

Putz! Percebi. É q não estava lembrado das inequações. Multiplica apenas o denominador posto na parte de cima da divisão. Eu pensava q multiplicava o denominador também!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?