• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indução Matemática - Dúvidas

Indução Matemática - Dúvidas

Mensagempor Jucassaba » Qua Dez 10, 2008 11:43

Caros amigos,
estou sem entender como o examinador desenvolvel este caso, para ser bem expecífico, a duvida é no desenvolvimento da 2a para a 3a linha do passo indutivo, quando desenvolve o 1o. termo de P(k+1).

abaixo a proposição:

\sum_{i=1}^{n}i\left(i+1 \right)=\frac{1}{3}n\left(n+1 \right)\left(n+2 \right)\;\; \forall \:n\in N

Não há o que se falar com relação a Base da Indução para P(n) verdadeira onde n=1.
Na HIpótese Indutiva também não tenho dúvidas com relação a P(k) verdadeira para k\geq1.
Agora no Passo Indutivo eu não consegui enteder o desenvolvimento da 2a para a 3a linha.

Desenvolvo o primeiro termo de P(k+1) e aplico a hipótese indutiva.

\sum_{i=1}^{k+1}i\left(i+1 \right)\;\;\rightarrow \;\; \frac{1}{3}\left(k+1 \right)\left(\left(k+1 \right)+1 \right)\left(\left( k+1 \right)+2 \right)

até aqui, claro, tudo bem...

\rightarrow \;\;\; \frac{1}{3}k \left(k+1 \right)\left(k+2 \right)+ \left( k+1 \right)\left( k+2 \right)

da linha acima para esta seguinte q não entendo com foi feito o desenvolvimento.


\left(k+1 \right)\left(k+2 \right) \left( \frac{k}{3}+1 \right)

a simplifição acima não entendi. Entao fiquei inseguro para a ultima linha abaixo, que conclui o desenvolvimento do primeiro termo.

\frac{1}{3}\left(k+1 \right)\left(k+2 \right) \left(k+3 \right)

No desenvolimento do segundo termo de P(k+1) não tenho dúvidas. Está Ok.
Se os amigos puderem me ajudar eu agradeço.

Abraços Juca
Jucassaba
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 19, 2008 18:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Indução Matemática - Dúvidas

Mensagempor felipe correa » Qua Dez 10, 2008 19:29

Na expressão:

$$\frac{1}{3}k(k+1)(k+2)+(k+1)(k+2)$$

O termo (k+1)(k+2) foi colocado em evidencia:

$$\frac{1}{3}k(k+1)(k+2)+(k+1)(k+2) = (k+1)(k+2)\left[\frac{\frac{1}{3}k(k+1)(k+2)}{(k+1)(k+2)}+\frac{(k+1)(k+2)}{(k+1)(k+2)}\right]$$

$$
 (k+1)(k+2)\left[\frac{\frac{1}{3}k(k+1)(k+2)}{(k+1)(k+2)}+\frac{(k+1)(k+2)}{(k+1)(k+2)}\right]=(k+1)(k+2)\left(\frac{1}{3}k + 1\right)$$
felipe correa
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Dez 10, 2008 19:19
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática computacional
Andamento: cursando

Re: Indução Matemática - Dúvidas

Mensagempor Jucassaba » Qui Dez 11, 2008 09:58

Valeu mesmo. Tava travado nisso e não tinha "visto" como a solução foi desenvolvida.

Muito obrigado , Felipe!

[]'s Juca
Jucassaba
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 19, 2008 18:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59