• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda sobre Limites seno e exponencial

Ajuda sobre Limites seno e exponencial

Mensagempor gn66 » Sex Jun 03, 2011 12:02

Pessoa, podem ajudar aqui, qual é o limite de:

\lim_{x\to0+}\frac{x^2.sen(1/x)} {sen(x)}

e de:

\lim_{x\to0+}\frac{e^\frac{-1}{x}} {x}

Eu não estou conseguindo resolver
gn66
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Jun 03, 2011 11:48
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Computer science
Andamento: cursando

Re: Ajuda sobre Limites seno e exponencial

Mensagempor gn66 » Sex Jun 03, 2011 13:18

O primeiro já consegui resolver, separamos

(x/senx).(x.sen(1/x))

x/senx =1

como lim(x->0+) x é 0

e sen(1/x) é uma funçao limitada (sen(1/x))<ou=1

Então segundo o teorema do confronto, lim x.sen(1/x) = 0

então lim(x->0+) (x/senx).(x.sen(1/x) = 1.0 =0
gn66
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Jun 03, 2011 11:48
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Computer science
Andamento: cursando

Re: Ajuda sobre Limites seno e exponencial

Mensagempor LuizAquino » Sex Jun 03, 2011 14:14

Primeiro, vamos escrever as suas ideias de uma forma mais adequada.

Sabemos que:
\lim_{x\to 0^+} \frac{x}{\textrm{sen}\, x} = \lim_{x\to 0^+} \frac{1}{\frac{\textrm{sen}\, x}{x}} = 1 .

Por outro lado, temos que -1 \leq \textrm{sen} \frac{1}{x} \leq 1 . Multiplicando toda a inequação por um número x > 0, obtemos que: -x \leq x\,\textrm{sen} \frac{1}{x} \leq x .

Como \lim_{x\to 0^+} -x = \lim_{x\to 0^+} x = 0, pelo Teorema do Confronto segue que \lim_{x\to 0^+} x\,\textrm{sen} \frac{1}{x} = 0 .

Portanto, \lim_{x\to 0^+} \frac{x^2\,\textrm{sen} \frac{1}{x}}{\textrm{sen}\, x} =  \lim_{x\to 0^+} \frac{x}{\textrm{sen}\, x} \cdot \lim_{x\to 0^+} x\,\textrm{sen} \frac{1}{x}= 0 .

Agora, em relação ao segundo exercício, você já estudou a Regra de L'Hôpital?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda sobre Limites seno e exponencial

Mensagempor Claudin » Sex Jun 03, 2011 15:01

No limite trigonométrico é só tentar chegar ao limite fundamental!
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ajuda sobre Limites seno e exponencial

Mensagempor gn66 » Sex Jun 03, 2011 15:14

Sim, já, mas não estou a conseguir ir por ai.... por causa do -1/x
gn66
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Jun 03, 2011 11:48
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Computer science
Andamento: cursando

Re: Ajuda sobre Limites seno e exponencial

Mensagempor Claudin » Sex Jun 03, 2011 15:43

gn66 escreveu:Sim, já, mas não estou a conseguir ir por ai.... por causa do -1/x



É só analisar o que o Luiz fez
seria \lim_{x\rightarrow0^+}\frac{x^2sen\frac{1}{x}}{senx} \Rightarrow \lim_{x\rightarrow0^+}\frac{x}{senx} . \lim_{x\rightarrow0^+}x.sen\frac{1}{x}

E que pelo teorema do confronto \lim_{x\rightarrow0^+}x.sen\frac{1}{x} = 0

mas não tem nenhum limite negativo ai nao.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ajuda sobre Limites seno e exponencial

Mensagempor gn66 » Sex Jun 03, 2011 16:05

não, no segundo....ai e que não estou conseguindo, peco desculpa pela confusao
gn66
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Jun 03, 2011 11:48
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Computer science
Andamento: cursando

Re: Ajuda sobre Limites seno e exponencial

Mensagempor LuizAquino » Sex Jun 03, 2011 16:30

Como eu falei anteriormente, se você já estudou a Regra de L'Hôpital, então basta aplicá-la.

Nesse caso, é interessante reescrever o limite de uma outra forma:

\lim_{x\to 0^+}\frac{e^{-\frac{1}{x}}} {x} = \lim_{x\to 0^+}\frac{\frac{1}{x}}{e^\frac{1}{x} }
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda sobre Limites seno e exponencial

Mensagempor gn66 » Sex Jun 03, 2011 16:34

Obrigado =)
gn66
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Jun 03, 2011 11:48
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Computer science
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.