• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite indeterminado 0/0

Limite indeterminado 0/0

Mensagempor ewald » Qui Mai 05, 2011 19:08

\lim_{x\rightarrow 1}  \frac{\sqrt[2]{x} -{x}^{2}}{1 -\sqrt[2]{x}}

Oi preciso de uma forma de se resolver este limite SEM o uso de L'hopital. Agradeço tmb se puderem deixar alguns dos 'macetes' para extrair a indeterminaçao de limites.

Caso LCMAquino esteja lendo : Gostei muito das tuas aulas no youtube, no entanto nao achei alguma que se dedique a mostrar metodos de extraçao da indeterminaçao do limite em questoes mais elaboradas, que sem duvidas é a parte de limites que mais causa duvidas (pra mim essa que eu botei ja é elaborada! ¬¬' ).

Obs.: desculpa os erros de portugues!
ewald
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Qui Mai 05, 2011 17:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrica
Andamento: cursando

Re: Limite indeterminado 0/0

Mensagempor LuizAquino » Qui Mai 05, 2011 19:41

\lim_{x\to 1} \frac{\sqrt{x} -{x}^{2}}{1 -\sqrt{x}} = \lim_{x\to 1} \frac{(\sqrt{x} -{x}^{2})(1+\sqrt{x})}{(1 -\sqrt{x})(1+\sqrt{x})}

= \lim_{x\to 1} \frac{(\sqrt{x} -{x}^{2})(1+\sqrt{x})}{1 - x}

= \lim_{x\to 1} \frac{(\sqrt{x} -{x}^{2})(1+\sqrt{x})(\sqrt{x}+x^2)}{(1 - x)(\sqrt{x}+x^2)}

= \lim_{x\to 1}  \frac{(x -x^4)(1+\sqrt{x})}{(1 - x)(\sqrt{x}+x^2)}

= \lim_{x\to 1} \frac{x(1 - x^3)(1+\sqrt{x})}{(1 - x)(\sqrt{x}+x^2)}

= \lim_{x\to 1} \frac{x(1-x)(1+x+x^2)(1+\sqrt{x})}{(1 - x)(\sqrt{x}+x^2)}

= \lim_{x\to 1} \frac{x(1+x+x^2)(1+\sqrt{x})}{\sqrt{x}+x^2}

\frac{1\cdot(1+1+1^2)(1+\sqrt{1})}{\sqrt{1}+1^2} = 3

ewald escreveu:Caso LCMAquino esteja lendo : Gostei muito das tuas aulas no youtube, no entanto não achei alguma que se dedique a mostrar métodos de extração da indeterminação do limite em questões mais elaboradas, que sem duvidas é a parte de limites que mais causa dúvidas (pra mim essa que eu botei já é elaborada! ¬¬' ).

Fico feliz que você tenha gostado de minhas vídeo-aulas. :)

Na verdade, para que o aluno consiga calcular os limites é necessário que ele esteja dominando os conteúdos de ensino fundamental e médio. Principalmente simplificações de expressões algébricas, fatoração, racionalização, produtos notáveis e divisão de polinômios. Caso você não esteja dominando esses conteúdos eu recomendo que você assista ao canal do Nerckie:
http://www.youtube.com/nerckie
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 19 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.