por maykonnunes » Qua Abr 27, 2011 09:54
Seja

uma sequencia de números reais.
a) Desmontre que

se e somente se

b) Vale um resultado geral da forma "

se e somente se

c) Seja
![a\in(-1,0] a\in(-1,0]](/latexrender/pictures/1a7c573ab1fc4b974fc3211c9c28405a.png)
. Mostre que

Preciso muito desta ajuda
Obrigado
-
maykonnunes
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 02:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por LuizAquino » Qui Abr 28, 2011 23:07
Seja

uma sequencia de números reais.
a) Desmontre que

se e somente se

Note que

e lembre-se do
Teorema do Confronto.
Além disso, lembre-se que

.
b) Vale um resultado geral da forma:

se e somente se

Considere o lembrete dado em a)
c) Seja
![a\in(-1,0] a\in(-1,0]](/latexrender/pictures/1a7c573ab1fc4b974fc3211c9c28405a.png)
. Mostre que

.
Lembre-se que a função

com

é decrescente. Além disso, temos que

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por MarceloFantini » Sex Abr 29, 2011 00:05
Será que talvez ele não tenha que demonstrar pela definição?

?
No caso do item c, será que já é dado que a função

com

é decrescente? Ele não pode usar o limite que você mencionou pois justamente o que ele quer é mostrar que o limite da sequência é zero. Como não sabemos, eu diria que talvez ele tenha que provar que

é decrescente e depois mostrar que o limite é zero.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sex Abr 29, 2011 00:19
Isso tudo depende da ordem adotada no curso.
De modo geral, primeiro estudamos as funções exponenciais e seus limites antes de falar de sequências.
É óbvio que se esse estudo não foi feito antes, então não podemos utilizá-lo na demonstração em questão.
De qualquer maneira, as demonstrações são análogas, portanto uma pode inspirar a outra. Eis o motivo da dica que dei.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por MarceloFantini » Sex Abr 29, 2011 00:25
No livro do Elon, Análise Real Vol. 1, não é feito assim. Não faz sentido falar em limite de função quando não se definiu ainda limite de sequência, pois se define limites de funções como limites de sequências de números num intervalo tal que a função aplicada na sequência convirja para o número desejado.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por maykonnunes » Sex Abr 29, 2011 00:40
so que tem algo ela vai ser crescente de -1 para 0 não é??
-
maykonnunes
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 02:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por MarceloFantini » Sex Abr 29, 2011 00:42
O que será crescente?

com

?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sex Abr 29, 2011 01:01
Prezado Fantini,
Até certo ponto, a ordem dos assuntos é uma questão de estilo de cada autor. Obviamente, o Elon Lages não é o único autor existente.
Há livros que começam com limites de funções para em seguida enxergar o limite de sequências como um caso discreto do limite de funções. Ou seja, toma-se uma função f(x) e enxerga-se a sequência como an = f(n), com n natural. Essa ordem dos conteúdos, por exemplo, é muito comum em livros de Cálculo.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por MarceloFantini » Sex Abr 29, 2011 13:14
Com todo respeito Luiz, uma sequência é enxergada como uma função sim, mas o objetivo de um curso de Análise é construir os conhecimentos de Cálculo rigorosamente, e portanto construir o conceito de limite de uma função contínua partindo de casos discretos como sequência. Logo, reitero que não se pode usar que

, pois é o que queremos provar.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por maykonnunes » Sex Abr 29, 2011 15:11
acho que a ideia é a seguinte como intervalo (-1,0] que se divide em duas
>

será crescente e converge para zero
>

será decrescence e converge para zero
Ainda não poço falar em função apenas en sequência
Abraços
-
maykonnunes
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 02:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por LuizAquino » Sex Abr 29, 2011 17:45
Tudo bem, já que a ideia é não usar funções, então vejamos uma solução.
Para
a=0, a prova é trivial.
Suponha que
a esteja no intervalo (-1, 0).
Queremos que para todo

exista

natural tal que

sempre que

.
Desenvolvendo a primeira inequação, obtemos que:



Como |
a| está no intervalo (0, 1), temos que ln|
a| < 0. Portanto, multiplicando toda a inequação por 1/ln|
a| devemos trocar o seu sentido.

Logo, dado

basta tomar qualquer

maior ou igual a

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por MarceloFantini » Sáb Abr 30, 2011 02:35
Luiz, perceba que você é contraditório em sua mensagem. Primeiro, diz não usar funções, e depois usa logaritmo natural.
Acredito que um jeito de resolver essa questão seja dizer que existe

natural tal que

para

. Aplicando teorema do confronto,

e

, logo

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sáb Abr 30, 2011 08:36
Não há problema algum em aplicar ln em ambos os lados da inequação. Note que temos a inequação

e queremos isolar a variável
n. Para fazer isso vamos precisar usar o conceito de logaritmos.
Quando disse "não usar funções" quis dizer que não usaria o conhecimento sobre as funções exponenciais como eu havia sugerido antes. Eu imaginei que isso ficaria claro considerando as mensagens anteriores, mas vejo que eu deveria ter sido mais específico. Desculpe-me por isso.
Além disso, note que
a está no intervalo (-1, 0]. Desse modo, nem sempre é válido que

como você escreveu. Por mais que você tome
n maior do que um certo

, haverá valores para os quais

. Portanto, não se pode aplicar o Teorema do Confronto da maneira como você sugeriu.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por MarceloFantini » Sáb Abr 30, 2011 16:25
Aquino, acredito que ambos não fomos claros. Concordo que minha demonstração fora incompleta e arrumarei a seguir. Entretanto, preciso reforçar que o seu uso de logaritmo
não é correto. Quando eu disse não usar funções, eu digo não usar funções elementares tradicionais, como seno, cosseno, logaritmo, exponencial, etc.
Consertando, basta afirmar que existe

natural tal que

para

. Assim, aplicando confronto, temos que

, logo

. Falta provar que

. Note que

. Assim, pela definição de limite temos que

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sáb Abr 30, 2011 16:51
Eu volto a afirmar que se temos a inequação

e queremos isolar a variável
n não há problema em usar os conceitos de logaritmos nesse exercício. Pelo que percebo, não vamos chegar a um consenso quanto a isso, portanto acho o mais prudente cada um respeitar a opinião do outro.
Quanto a sua solução, falta ter o cuidado de tomar
a não nulo, haja vista que como
a está no intervalo (-1, 0], se tomarmos
a=0 não ocorrerá que

. De qualquer modo, isso não chega a ser tão problemático, pois tomando
a=0 a prova é trivial. Em seguida, bastava tomar
a no intervalo (-1, 0) e continuar a solução como descrito.
Além disso, falta justificar por que é possível afirmar que existe

que atenda

, com

. Isso não segue assim tão direto.
Uma alternativa seria perceber que como 0 < |
a| < 1, então

é o mesmo que

, para algum
p > 1. Como para números
n muito grandes,

será maior do que
n, então teremos que

será menor do que

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [sequencia] Calcular limite de sequencia por definição
por amigao » Ter Abr 15, 2014 15:15
- 4 Respostas
- 3732 Exibições
- Última mensagem por e8group

Dom Mai 11, 2014 17:09
Sequências
-
- Sequencia
por Amparo » Dom Mar 09, 2008 16:26
- 3 Respostas
- 3415 Exibições
- Última mensagem por nietzsche

Sex Set 02, 2011 00:42
Sequências
-
- Sequencia
por Abner » Qua Jan 26, 2011 19:15
- 1 Respostas
- 2295 Exibições
- Última mensagem por Neperiano

Qua Ago 31, 2011 18:43
Geometria Plana
-
- [Sequência]
por elizangelasss20 » Qua Abr 11, 2012 19:12
- 4 Respostas
- 2684 Exibições
- Última mensagem por elizangelasss20

Qua Abr 11, 2012 20:52
Sequências
-
- Sequência
por GrazielaSilva » Qui Nov 01, 2012 10:20
- 1 Respostas
- 3785 Exibições
- Última mensagem por young_jedi

Qui Nov 01, 2012 13:49
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.