• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função definida por limite?

função definida por limite?

Mensagempor [secret] » Ter Mar 29, 2011 14:37

Determine uma função definida por f(x)= \lim_{n\rightarrow\propto} \frac{{x}^{n+2}}{\sqrt[2]{{2}^{2n}+{x}^{2n}}} ; x > 0

gente, alguém me da uma luz de como eu começo a fazer isso?? não tenho a mínima ideia de como começar :oops:
[secret]
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Mar 28, 2011 18:32
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: função definida por limite?

Mensagempor LuizAquino » Ter Mar 29, 2011 19:32

Primeiro, note que a variável do limite é n e não x. Portanto, os termos que dependem apenas de x são constantes dentro do limite.

Desse modo, temos que:
f(x)= \lim_{n\to +\infty} \frac{{x}^{n+2}}{\sqrt{{2}^{2n}+{x}^{2n}}} \Rightarrow f(x)= x^2\lim_{n\to +\infty} \frac{{x}^{n}}{\sqrt{{2}^{2n}+{x}^{2n}}}

Agora, divida tanto o numerador quanto o denominador por x^n (o que poderemos fazer já que x>0).

Em seguida, você terá que analisar três casos para calcular o valor do limite:
(i) Quando 0 < x < 2.
(ii) Quando x = 2.
(iii) Quando x > 2.

Por fim, basta montar a função, que terá o seguinte formato:
f(x)=
\left\{\begin{array}{ll}
ax^2; &0<x<2 \\
4b; & x=2 \\
cx^2; & x > 2
\end{array}\right.

Sendo a, b e c os valores de \lim_{n\to +\infty} \frac{{x}^{n}}{\sqrt{{2}^{2n}+{x}^{2n}}} para cada um dos casos descritos anteriormente.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

exercícios de matemática aplicada

Mensagempor carolinalinda » Qui Mar 31, 2011 02:29

[tex]Achar a equação da reta tangente à curva y=2{x}^{2}+5x-7 no ponto (0,-7).

Alguém sabe como resolver este exercício, me ajudem por gentileza.
Editado pela última vez por carolinalinda em Qui Mar 31, 2011 20:36, em um total de 1 vez.
carolinalinda
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Mar 31, 2011 01:54
Formação Escolar: GRADUAÇÃO
Área/Curso: administração
Andamento: formado

Re: função definida por limite?

Mensagempor LuizAquino » Qui Mar 31, 2011 10:24

Olá carolinalinda,

Por motivo de organização, não use tópicos existentes para enviar novos exercícios.

Por favor, crie um novo tópico com a sua dúvida.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: função definida por limite?

Mensagempor [secret] » Qui Mar 31, 2011 14:00

obrigado pela resposta!!!
deu certinho!!
[secret]
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Mar 28, 2011 18:32
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.