• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo que envolve PG

Calculo que envolve PG

Mensagempor andersontricordiano » Qui Mar 31, 2011 02:19

Seja x=1+10+{10}^{2}+...+{10}^{n-1} e y={10}^{n}+5 . Determine \sqrt[]{xy+1}

Resposta: \frac{{10}^{n}+2}{3}


Por favor me ajudem!
Obrigado quem me ajudar!
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calculo que envolve PG

Mensagempor LuizAquino » Qui Mar 31, 2011 12:32

Dica
Note que x representa soma dos n termos da p.g. \{1,\, 10,\, {10}^{2},\, \ldots,\, {10}^{n-1}\}. Usando a fórmula para a soma dos n termos de uma p.g., teremos que:

x = \frac{1\cdot (10^n-1)}{10-1}

Agora, tente resolver o exercício.

Se tiver dificuldade, envie toda a resolução que você tentou fazer e onde está a sua dúvida.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Calculo que envolve PG

Mensagempor andersontricordiano » Qui Mar 31, 2011 16:03

Eu cheguei a esse calculo

\sqrt[]{\frac{{10}^{n2}+(5*{10}^{n})-(1*{10}^{n})-5}{9}}


A minha dúvida é como se procede para calcular isso
(5*{10}^{n})-(1*{10}^{n})



Obrigado pela ajuda!
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calculo que envolve PG

Mensagempor FilipeCaceres » Qui Mar 31, 2011 17:35

Dando continuidade,
\sqrt[]{\frac{{10}^{n2}+(5*{10}^{n})-(1*{10}^{n})-5}{9}+1} OBS.: esqueceu do +1

Arrumando temos,
\sqrt[]{\frac{{10}^{2n}+4.{10}^{n}+4}{9}}

Observe que:
10^{2n}+4.10^n+4=(10^n+2)^2

Assim temos,
\sqrt{(\frac{10^n+2}{3})^2}

Portanto,
\sqrt[]{xy+1}=\frac{10^n+2}{3}

Espero ter ajudado.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59