• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Modular (Dúvida)

Inequação Modular (Dúvida)

Mensagempor renanrdaros » Ter Mar 22, 2011 23:33

Como faço para resolver esta inequação sem o método de elevar ambos os lados ao quadrado?

|x-2|<|x+1|

Sempre que tento resolver acabo cancelando a variável x em ambos os lados.
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Inequação Modular (Dúvida)

Mensagempor MarceloFantini » Qua Mar 23, 2011 00:08

Tente passar |x+1| para o outro lado, avalie onde cada módulo é positivo e negativo e trabalhe com cada caso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Inequação Modular (Dúvida)

Mensagempor renanrdaros » Qua Mar 23, 2011 00:58

Fantini,

Passei (x+1) para o outro lado, mas dá no mesmo. Continuo anulando a variável x.
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Inequação Modular (Dúvida)

Mensagempor MarceloFantini » Qua Mar 23, 2011 01:00

Você não fez a avaliação que eu comentei. Existe um caso onde x não se anula.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Inequação Modular (Dúvida)

Mensagempor renanrdaros » Qua Mar 23, 2011 01:29

Valeu, Fantini.

Analisei os casos restantes e cheguei perto do resultado. Por que perto do resultado? Porque, pelos meus cálculos, eu tenho uma condição que me diz que x<2.

|x-2| = -x+2, se x-2<0 <--> x<2

O resultado correto da questão seria: S=\left(\frac{1}{2};+\infty \right)

Com a condição citada eu cheguei em S=\left(\frac{1}{2};2 \right)

Onde é que eu tô fazendo a confusão???????
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Inequação Modular (Dúvida)

Mensagempor LuizAquino » Qua Mar 23, 2011 08:32

Analise o sinal dos termos (x+1) e (x-2) como já havia sido dito.
inequacao-modular.png
inequacao-modular.png (3.06 KiB) Exibido 11053 vezes


Desse modo, a inequação |x-2|<|x+1| gera tem 3 inequações:
(i) -(x-2) < -(x+1), se x < -1.
(ii) -(x-2) < (x+1), se -1<= x < 2.
(iii) x-2 < x+1, se x >= 2.

Resolva cada uma das inequações e em seguida tome a união das soluções.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequação Modular (Dúvida)

Mensagempor renanrdaros » Qua Mar 23, 2011 11:02

Luiz,

Eu estou resolvendo cada um dos casos, mas sempre chego em S=\left(\frac{1}{2};2 \right) por causa das condições.
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Inequação Modular (Dúvida)

Mensagempor LuizAquino » Qua Mar 23, 2011 11:23

|x-2|<|x+1|

(i) -(x-2) < -(x+1), se x < -1.
x-2 > x+1
-2 > 1
S1 = (-\infty,\,-1)\cap \varnothing = \varnothing

(ii) -(x-2) < (x+1), se -1<= x < 2.
x-2 > -x-1
x > 1/2
S2 = [-1,\, 2)\cap \left(\frac{1}{2},\, +\infty\right) = \left(\frac{1}{2},\, 2\right)

(iii) x-2 < x+1, se x >= 2.
-2 < 1
S3 = [2,\, +\infty)\cap \mathbb{R} = [2,\, +\infty)

Solução final:
S = S1 \cup S2 \cup S3 = \left(\frac{1}{2},\, +\infty\right)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequação Modular (Dúvida)

Mensagempor renanrdaros » Qua Mar 23, 2011 11:31

LuizAquino escreveu:(iii) x-2 < x+1, se x >= 2.
-2 < 1
S3 = [2,\, +\infty)\cap \mathbb{R} = [2,\, +\infty)


Era sempre nessa parte que eu encalhava. Eu achava que por ficar sem uma variável x na resolução do problema, ele não tinha solução.
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Inequação Modular (Dúvida)

Mensagempor LuizAquino » Qua Mar 23, 2011 12:10

Vale a pena enxergar a interpretação geométrica dessa inequação modular.

Se f(x)=|x-2| e g(x)=|x+1|, você quer saber quando que f(x)<g(x). Ou seja, quando o gráfico da função f está abaixo do gráfico da função g. A figura abaixo ilustra essa situação.

graficos-funcoes-modulares.png
graficos-funcoes-modulares.png (4.54 KiB) Exibido 11047 vezes
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequação Modular (Dúvida)

Mensagempor renanrdaros » Qua Mar 23, 2011 17:05

LuizAquino escreveu:|x-2|<|x+1|

(i) -(x-2) < -(x+1), se x < -1.
x-2 > x+1
-2 > 1
S1 = (-\infty,\,-1)\cap \varnothing = \varnothing

(ii) -(x-2) < (x+1), se -1<= x < 2.
x-2 > -x-1
x > 1/2
S2 = [-1,\, 2)\cap \left(\frac{1}{2},\, +\infty\right) = \left(\frac{1}{2},\, 2\right)

(iii) x-2 < x+1, se x >= 2.
-2 < 1
S3 = [2,\, +\infty)\cap \mathbb{R} = [2,\, +\infty)

Solução final:
S = S1 \cup S2 \cup S3 = \left(\frac{1}{2},\, +\infty\right)



LuizAquino,

Uma última dúvida: Por que você não aprensentou também o caso em que: |x-2|\geq0 e |x+1|<0 ??
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Inequação Modular (Dúvida)

Mensagempor renanrdaros » Qua Mar 23, 2011 17:06

Foi porque, de cara, uma condição anula a outra?
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Inequação Modular (Dúvida)

Mensagempor LuizAquino » Qua Mar 23, 2011 17:19

Basta interpretar a análise dos sinais que fiz anteriormente e você deve perceber que temos que nos preocupar apenas com três casos:
(i) Quando x < -1.
(ii) Quando -1 <= x < 2.
(iii) Quando x >= 2.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequação Modular (Dúvida)

Mensagempor renanrdaros » Qua Mar 23, 2011 17:36

Foi o que eu quis dizer. Se eu fosse analisar um quarto caso ficaria:

(iv) x\geq2 e x<-1

Uma condição estaria anulando a outra.
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D