• Anúncio Global
    Respostas
    Exibições
    Última mensagem

acredito q fiz errado podem me dizer a respota correta?

acredito q fiz errado podem me dizer a respota correta?

Mensagempor Fabricio dalla » Dom Mar 13, 2011 23:17

(ITA)No desenvolvimento de {({ax}^{2}-2bx+c+1)}^{5} obtem-se um polinomio P(x) cujos coeficientes somam 32.Se 0 e -1 sao raizes de P(x),determine a soma a+b+c

como estou sem gabarito não pude ver a resposta
meus coeficientes deram;a=1,b=-1/2,c=-1
R=-1/2
poderia me indicar a resposta correta dessa questão ?
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: acredito q fiz errado podem me dizer a respota correta?

Mensagempor Elcioschin » Seg Mar 14, 2011 11:45

P(x) = (ax² - 2bx + c + 1)^5

Para x = 0 ---> P(0) = 0 ----> 0 = (a*0² - 2b*0 + c + 1)^5 ----> (c + 1)^5 = 0 ----> c = - 1

Para x = -1 ---> P(-1) = 0 ----> 0 = [a*(-1)² - 2b*(-1) + c + 1)^5 ----> (a + 2b)^5 = 0 ----> a = - 2b

P(x) = [(-2b)*x² - 2*bx]^5 ----> P(x) = [- 2bx² - 2bx]^5 ----> P(x) = [(- 2bx)(x + 1)]^5 ----> P(x) = - 32*b^5*x^5*(x + 1)^5 ---->

P(x) = - 32*b^5*x^5*(x^5 + 5x^4 + 10x³ + 10x² + 5x + 1)

P(x) = - (32*b^5)*x^10 - (160*b^5)*x^9 - (320*b^5)*x^8 - (320*b^5)*x^7 - (160*b^5)*x^6 - (32*b^5)*x^5

Soma dos coeficientes ----> S = 32 ----> - 32*b^5 - 160*b^5 - 320*b^5 - 320*b^5 - 160*b^5 - 32*b^5 = 32 ---->

- b^5 - 5*b^5 - 10*b^5 - 10*b^5 - 5*b^5 - b^5 = 32 -----> - 32*b^5 = 32 ----> b^5 = - 1 ----> b = - 1

a = - 2b ----> a = - 2*(-1) ----> a = 2

a + b + c = 2 - 1 - 1 -----> a + b + c = 0
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: acredito q fiz errado podem me dizer a respota correta?

Mensagempor LuizAquino » Seg Mar 14, 2011 12:46

Soma dos coeficientes ----> S = 32 ----> - 32*b^5 - 160*b^5 - 320*b^5 - 320*b^5 - 160*b^5 - 32*b^5 = 32 ---->

- b^5 - 5*b^5 - 10*b^5 - 10*b^5 - 5*b^5 - b^5 = 32 -----> - 32*b^5 = 32 ----> b^5 = - 1 ----> b = - 1



Uma pequena correção:
- 32b^5 - 160b^5 - 320b^5 - 320b^5 - 160b^5 - 32b^5 = 32 \Rightarrow  - b^5 - 5b^5 - 10b^5 - 10b^5 - 5b^5 - b^5 = 1 \Rightarrow  b^5 = -\frac{1}{32} \Rightarrow  b = -\frac{1}{2}

Portanto, a=-2b=1.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: acredito q fiz errado podem me dizer a respota correta?

Mensagempor Elcioschin » Seg Mar 14, 2011 13:49

Luiz

Perfeito! Foi uma distração minha.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: acredito q fiz errado podem me dizer a respota correta?

Mensagempor ant_dii » Dom Ago 07, 2011 20:02

Elcioschin escreveu:P(x) = (ax² - 2bx + c + 1)^5

Para x = 0 ---> P(0) = 0 ----> 0 = (a*0² - 2b*0 + c + 1)^5 ----> (c + 1)^5 = 0 ----> c = - 1

Para x = -1 ---> P(-1) = 0 ----> 0 = [a*(-1)² - 2b*(-1) + c + 1)^5 ----> (a + 2b)^5 = 0 ----> a = - 2b

P(x) = [(-2b)*x² - 2*bx]^5 ----> P(x) = [- 2bx² - 2bx]^5 ----> P(x) = [(- 2bx)(x + 1)]^5 ----> P(x) = - 32*b^5*x^5*(x + 1)^5 ---->

P(x) = - 32*b^5*x^5*(x^5 + 5x^4 + 10x³ + 10x² + 5x + 1)

P(x) = - (32*b^5)*x^10 - (160*b^5)*x^9 - (320*b^5)*x^8 - (320*b^5)*x^7 - (160*b^5)*x^6 - (32*b^5)*x^5

Soma dos coeficientes ----> S = 32 ----> - 32*b^5 - 160*b^5 - 320*b^5 - 320*b^5 - 160*b^5 - 32*b^5 = 32 ---->

- b^5 - 5*b^5 - 10*b^5 - 10*b^5 - 5*b^5 - b^5 = 32 -----> - 32*b^5 = 32 ----> b^5 = - 1 ----> b = - 1

a = - 2b ----> a = - 2*(-1) ----> a = 2

a + b + c = 2 - 1 - 1 -----> a + b + c = 0


Só comentando...
Como látex facilita a vida de um matemático com o desejo de passar suas idéias...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)