por pinkfluor » Qua Mar 02, 2011 11:10
Estou encucada com o gabarito dessa questao do concurso da petrobras:
Sejam f(x),g(x) e h(x) funções reais de variáveis reais, tais que h(x)=f(g(x)), para todo x real. Considere a tabela a seguir, onde f'(x) e g'(x) são as derivadas das funções f(x) e g(x), respectivamente.
x 0 1 2 3
f(x) 0 2 -1 -2
f'(x) 1 -4 3 -1
g(x) 3 2 1 0
g'(x) -1 -3 4 1
O valor de h'(0)+h'(1)+h'(2)+h'(3) é: (A)-23 ; (B) -17; (C) -1 ; (D) 3; (E) 22
GABARITO: LETRA (A) -23
Editado pela última vez por
pinkfluor em Qua Mar 02, 2011 11:15, em um total de 1 vez.
-
pinkfluor
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Mar 01, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: formado
por pinkfluor » Qua Mar 02, 2011 11:15
Achei letra E, mas gabarito é letra A =(
Resolvi pela Regra da Cadeia:
h’(x) = (f(g(x)))’ = f’(g(x))g’(x)
Logo, h’(0) = f’(0).g’(0)= 1.(-1)= -1
h’(1) = f’(1).g’(1)= (-4).(-3)= 12
h’(2) = f’(2).g’(2)= 3.4 = 12
h’(3) = f’(3).g’(3)= (-1).1 = -1
Então, h’(0) + h’(1) + h’(2) + h’(3) = -1+12+12-1= 24-2 = 22. (Letra E, mas gabarito é letra A)
Acho que estou errando pq a regra da cadeia pra funcao composta é f’(g(x)).g’(x) e estou fazendo f'(x).g'(x) , mas pela tabelinha que foi dada, como achar o valor de f’(g(x))? ou melhor, f’(g(0)), f’(g(1))...???
-
pinkfluor
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Mar 01, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: formado
por LuizAquino » Qua Mar 02, 2011 12:06
pinkfluor escreveu:Sejam f(x),g(x) e h(x) funções reais de variáveis reais, tais que h(x)=f(g(x)), para todo x real. Considere a tabela a seguir, onde f'(x) e g'(x) são as derivadas das funções f(x) e g(x), respectivamente.
O valor de h'(0)+h'(1)+h'(2)+h'(3) é: (A)-23 ; (B) -17; (C) -1 ; (D) 3; (E) 22
GABARITO: LETRA (A) -23
Regra da cadeia:
h'(x) = [f(g(x))]' = f'(g(x))g'(x)h'(0) = f'(g(0))g'(0) = f'(3)(-1)= (-1)(-1) = 1h'(1) = f'(g(1))g'(1) = f'(2)(-3)= 3(-3) = -9h'(2) = f'(g(2))g'(2) = f'(1)(4)= (-4)(4) = -16h'(3) = f'(g(3))g'(3) = f'(0)(1)= (1)(1) = 1h'(0)+h'(1)+h'(2)+h'(3) = 1 - 9 - 16 + 1 = -23
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada de Ln(x) concurso petrobras.
por Sobreira » Qui Mai 16, 2013 01:20
- 1 Respostas
- 1282 Exibições
- Última mensagem por Sobreira

Qui Mai 16, 2013 08:54
Cálculo: Limites, Derivadas e Integrais
-
- Concurso Petrobras
por lourivallobo » Ter Jan 24, 2012 20:47
- 1 Respostas
- 3885 Exibições
- Última mensagem por LuizAquino

Ter Jan 24, 2012 21:12
Logaritmos
-
- Concurso Petrobras
por lourivallobo » Ter Jan 24, 2012 20:49
- 1 Respostas
- 1389 Exibições
- Última mensagem por LuizAquino

Ter Jan 24, 2012 21:51
Estatística
-
- Concurso Petrobras
por lourivallobo » Ter Jan 24, 2012 20:52
- 1 Respostas
- 2947 Exibições
- Última mensagem por LuizAquino

Ter Jan 24, 2012 22:08
Estatística
-
- Concurso Petrobras
por lourivallobo » Qua Jan 25, 2012 09:13
- 4 Respostas
- 2858 Exibições
- Última mensagem por Arkanus Darondra

Qua Jan 25, 2012 17:30
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.