• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequação, dúvida.

inequação, dúvida.

Mensagempor jose henrique » Seg Fev 21, 2011 21:31

estou tendo que resolver uma questão o que eu pergunto é que se estou certo que afirmo que isso não é possível.
\frac{1}{x+1}<\frac{\left|x-1 \right|}{x-2} \Leftrightarrow x-2<\left|x-1 \right|(x+1)
visto que ao meu ver não são equivalentes uma vez que a multiplicação em cruz só pode ser feita quando há uma igualdade, correto?

preciso de ajuda, obrigado!!
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: inequação, dúvida.

Mensagempor Renato_RJ » Qua Fev 23, 2011 23:22

EDITADO :
Cometi um engano e o prof. Luiz me corrigiu, editei meu post para evitar erros futuros...

Muito obrigado Luiz :y: :y:
Editado pela última vez por Renato_RJ em Qui Fev 24, 2011 12:15, em um total de 1 vez.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: inequação, dúvida.

Mensagempor LuizAquino » Qui Fev 24, 2011 09:00

Não podemos "multiplicar em cruz" nas inequações da mesma forma que podemos nas equações.

Vejamos um exemplo.

Exercício: Determine a solução da inequação \frac{x-1}{x-2}  > \frac{5}{2} sendo x um número real.

Solução Errada
\frac{x-1}{x-2}  > \frac{5}{2}

2x - 2  > 5x-10

-3x > -8

x < \frac{8}{3}

Se essa é a solução correta, então para x=1 a inequação deveria ser válida, correto? E o que acontece se você substituir x por 1 na inequação? Surpresa! Você teria que 0 > 5/2!

Solução Correta
\frac{x-1}{x-2}  > \frac{5}{2}

\frac{x-1}{x-2}  - \frac{5}{2} > 0

\frac{-3x+8}{2x-4} > 0

Sabemos que a função f(x)=-3x+8 é positiva para x < 8/3 e negativa para x > 8/3. Por outro lado, a função g(x)=2x-4 é positiva para x>2 e negativa para x<2. Fazendo a análise dos sinais das funções, a solução da inequação é 2<x<8/3.

E agora, você deve estar se perguntando: por que será que não posso "multiplicar em cruz" nas inequações?

A resposta está na seguinte propriedade de inequações:
Se a>b, então:
(i) ac > bc, se c > 0
(ii) ac < bc, se c < 0

No exercício acima, quando nós fizemos (de maneira errada) \frac{x-1}{x-2}  > \frac{5}{2} \Rightarrow 2(x - 1)  > 5(x-2), podemos enxergar que realizamos duas operações:
(a) Multiplicamos toda a inequação por 2, que como é um número positivo não altera a inequação (propriedade (i)).
Isto é, nós fizemos: 2\cdot \frac{x-1}{x-2}  >  2 \cdot \frac{5}{2} \Rightarrow \frac{2(x - 1)}{x-2}  > 5

(b) Em seguida, multiplicamos toda a inequação por (x-2). Aqui é que mora o problema! O número (x-2) pode ser negativo ou pode ser positivo!
Quando (x-2) for positivo (portanto x>2), a inequação não se altera e teríamos que (x-2)\cdot \frac{2(x - 1)}{x-2}  > 5\cdot (x-2) \Rightarrow 2(x - 1) > 5(x - 2) \Rightarrow x < \frac{8}{3} (Propriedade (i))

Mas, quando (x-2) for negativo (portanto x<2), o correto seria ficarmos com (x-2)\cdot \frac{2(x - 1)}{x-2}  < 5\cdot (x-2) \Rightarrow 2(x - 1) < 5(x - 2)  \Rightarrow x > \frac{8}{3} (Propriedade (ii))

Note que essa última solução não faz sentido, já que com x<2 nós obtemos que a inequação é tal que x > \frac{8}{3}.

Já a primeira solução está correta: para x>2 vai ocorrer que a inequação é tal que x < \frac{8}{3}. Portanto o número x procurado é tal que 2< x < \frac{8}{3}.
Editado pela última vez por LuizAquino em Qui Fev 24, 2011 15:52, em um total de 4 vezes.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: inequação, dúvida.

Mensagempor Renato_RJ » Qui Fev 24, 2011 12:29

Grande Luiz, que escorregada que eu dei hein ?! Que vergonha para mim.. Nem vou usar a madruga como desculpa.. rss...

Tinha me esquecido da grande dicotomia "f(x) < g(x)", mil perdões a todos que leram a "asneira" que escrevi....

Mais uma vez, muito obrigado...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: inequação, dúvida.

Mensagempor jose henrique » Qui Fev 24, 2011 16:44

Por favor, tiram mais essa dúvida. Eu li aqui que existe uma propriedade chamada de relação de ordem que diz que Se a/b< c/d então axd < axb. A minha pergunta é a seguinte porque eu não posso aplicar esta propriedade nesta questão?
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: inequação, dúvida.

Mensagempor LuizAquino » Qui Fev 24, 2011 18:59

jose henrique escreveu:Se \frac{a}{b}< \frac{c}{d}, então a\cdot d < b\cdot c. A minha pergunta é a seguinte porque eu não posso aplicar esta propriedade nesta questão?


Se você prestar um pouco mais de atenção no que expliquei acima, você entenderia o porque.

Vou lhe dar outro exemplo:
Você concorda que \frac{4}{(-7)} < \frac{5}{3} ?

Agora, aplique a propriedade do jeito que você disse: 4\cdot 3 < 5\cdot (-7). Mas, isso é falso!

Percebeu o problema? A propriedade que você citou funciona apenas se b e d são positivos (e não nulos).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.