• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicios

Exercicios

Mensagempor Renks » Ter Fev 15, 2011 17:13

(UFF) Em cada uma das duas urnas,A e B, ha apernas,bolas brancas e azuis.
Sabe-se que 60% das bolas contidas em A sao Brancas e que 50% das bolas contidas em B sao azuis.As duas urnas juntas contem 500 bolas, das quais 44% sao azuis.Determine quantas bolas ha em cada urna.


urna A tem 0.6 brancas e 0.4 azuis urna B tem 0.5 de cada cor de 500 bolas 44% sao azuis entao achei que B.azul total= 220 B.branca total = 280
tentei por regra de 3 achar a quantia de bolas azuis e brancas em cada urna,mas encontrei valores quebrados cuja soma nao da 500.
gostaria de ver um metodo para resolver.

gabarito Urna A=300 Urna B =200
Renks
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Fev 14, 2011 20:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Exercicios

Mensagempor DanielFerreira » Qui Fev 17, 2011 16:23

Olá Renks,
(UFF) Em cada uma das duas urnas,A e B, ha apernas,bolas brancas e azuis.
Sabe-se que 60% das bolas contidas em A sao Brancas e que 50% das bolas contidas em B sao azuis.As duas urnas juntas contem 500 bolas, das quais 44% sao azuis.Determine quantas bolas ha em cada urna.

Total de bolas azuis:
44% * 500 = 220

Total de bolas vermelhas:
500 - 220 = 280

Bolas em "B":
\frac{50}{100} . B = azuis

\frac{50}{100} . B = brancas

Bolas em "A":
\frac{60}{100} . B = brancas

\frac{40}{100} . B = azuis

Agora, somemos as quantidades de bolas azuis e brancas com suas respectivas urnas.
Urna A:

\frac{50B}{100} + \frac{60A}{100} = 280


Urna B:

\frac{50B}{100} + \frac{40A}{100} = 220


resolvendo esse sistema, multiplicando por (- 1) a 2ª equação:

\frac{50B}{100} - \frac{50B}{100} + \frac{60A}{100} - \frac{40A}{100} = 280 - 220

\frac{60A}{100} - \frac{40A}{100} = 60

\frac{20A}{100} = 60

A = 300

Então, 500 - 300 =
200 = B
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Exercicios

Mensagempor Renks » Dom Fev 20, 2011 19:36

Muito obrigado.
Renks
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Fev 14, 2011 20:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Exercicios

Mensagempor DanielFerreira » Ter Fev 22, 2011 16:37

:y:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}