• Anúncio Global
    Respostas
    Exibições
    Última mensagem

duvida de probabilidade

duvida de probabilidade

Mensagempor natanskt » Ter Dez 14, 2010 21:05

um dado foi jogado duas vezes.a probabilidade de obtermos a soma dos pontos menor ou igual a 6 é:
a-)5/18
b-)5/12
c-)7/12
d-)13/18
e-)5/6

essa outra tambem :
(F.Casper Libero-SP) qual é a probabilidade de obtermos a soma 5 na jogada de um par de dados equilibrados?
a-)5/6
b-)1/9
c-)5/36
d-)1/36
e-)4/6
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: duvida de probabilidade

Mensagempor 0 kelvin » Ter Dez 14, 2010 21:08

A primeira coisa é fazer o espaço amostral. Quantos pares de números de 1 a 6 apresentam soma menor ou igual a 6?
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: duvida de probabilidade

Mensagempor natanskt » Ter Dez 14, 2010 21:20

eu começei agora com probabilidade,num intendi,tem como responder?
é que tem muitas desse tipo e eu só postei essas duas pra ter uma base
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: duvida de probabilidade

Mensagempor 0 kelvin » Qua Dez 15, 2010 22:04

O espaço amostral é um conjunto de elementos, os resultados possíveis. Jogar o dado duas vezes pode somar 1 + 1 no mínimo, ou 6 + 6 no máximo.

Faça os pares que começam com 1: {1;1}, {1;2}, {1;3}, {1;4}, {1;5}

Agora começando por 2: {2;2}, {2;3}, {2;4}

Acabou o 2, agora os pares que começam com 3: {3;3}, só tem esse.

6 pares não são de números repetidos. Esses 6 vc dobra pra contar tambem a ordem invertida, 12 + 3 = 15. Os pares 11, 22 e 33, como são dois números repetidos, não conta a inversão de ordem pq invertido ou não, continua sendo 11, 22 e 33 (sempre me confundo quando o espaço amostral tem esses casos).

São quantos pares de resultados de duas jogadas? 6 x 6 = 36. Desses 36, 15 são casos que obedecem a "soma menor ou igual a 6". Então vc faz 15/36 = 5/12

A da Casper Líbero não tem resposta? Soma 5 é conseguida com 2 + 3 ou 3 + 2, mas 2/36 não tem em nenhuma alternativa?! Ou devo estar pensando errado: "probabilidade de obtermos a soma tal". Se 3 + 2 e 2 + 3 contam como uma soma igual a 5, então não são 6 x 6 somas, mas 6 x 2 = 18 somas. Aí, 2/18 = 1/9.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59