• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Achar catetos pela hipotenusa e pela altura

Achar catetos pela hipotenusa e pela altura

Mensagempor gustavoluiss » Dom Dez 05, 2010 23:44

Em um triângulo retângulo, a hipotenusa mede 40 m e a altura relativa a ela, 19,2 m .Calcule as medidas dos catetos.

Tava resolvendo ai tive que eleveta 768² e por numa equação biquadrada,é isso ?

Ou tem como fazer uma proporção com hipotenusa e os catetos e resolver de uma maneira mais simples ?
gustavoluiss
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 118
Registrado em: Ter Nov 23, 2010 15:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Achar catetos pela hipotenusa e pela altura

Mensagempor PedroSantos » Seg Dez 06, 2010 05:35

Também fiquei com uma dúvida:
Consideremos o triangulo ABC, retangulo em B e a hipotenusa como base do triangulo. Ao traçarmos um segmento de recta do vertice B prependicular à base,obtemos a altura em relação à base(hipotenusa) e dividimos o angulo reto em dois de 45º.
Ficamo com 2 triangulos, o ABD e o BCD, ambos retangulos em D. Se a divisão do angulo B deu origem a dois angulos de 45º e se D é retangulo, pode-se concluir que os angulos A e C têm 45º.
Será que o meu racicinio está correcto?
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: Achar catetos pela hipotenusa e pela altura

Mensagempor fttofolo » Seg Dez 06, 2010 09:47

Pedro, você não pode concluir 2 ângulos de 45, pois não fala que o triângulo é isósceles.
Um exemplo:
imagem1.JPG
imagem1.JPG (5.26 KiB) Exibido 8069 vezes
fttofolo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Sex Nov 19, 2010 10:15
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Achar catetos pela hipotenusa e pela altura

Mensagempor fttofolo » Seg Dez 06, 2010 10:10

Gustavo já resolvi por dois outros caminhos e as respostas são cabulosas. Não falta algum detalhe no enunciado?
fttofolo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Sex Nov 19, 2010 10:15
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Achar catetos pela hipotenusa e pela altura

Mensagempor Elcioschin » Seg Dez 06, 2010 15:04

Gustavo

bc = ah ----> bc = 40*19,2 ----> bc = 768 ----> c = 768/b

b² + c² = a² ----> b² + (768/b)² = 40² -----> (b²)² - 1600b² + 768² = 0 ----> Bi-quadrada (ou equação do 2º grau na variável b²)

Discriminante ----> D = 1600² - 4*768² ----> D = 1600² - (2²)*(768²) ----> D = 1600² - (2*768)² ----> D = 1600² - 1536² ----> D = (1600 + 1536)*(1600 - 1536)

D = 3136*64 ----> D = (56)²*(8²) ----> V(D) = 56*8 ----> V(D) = 448

I) b² = (1600 + 448)/2 ----> b² = 1024 ----> b = 32 ----> c = 24

II) b² = (1600 - 448)/2 ----> b² = 1152 ----> b = 34 -----> c ~= 22,6
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Achar catetos pela hipotenusa e pela altura

Mensagempor gustavoluiss » Seg Dez 06, 2010 20:37

É tenque fazer uma equação biquadrada mesmo,feio hehe,questão do livro de nono ano.... vlw obrigado.
gustavoluiss
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 118
Registrado em: Ter Nov 23, 2010 15:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 19 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D