por Marcelo C Delgado » Seg Nov 08, 2010 16:01
Boa tarde pessoal,
Estou com uma dúvida no problema abaixo.
- Num triângulo dois catetos adjacentes "a" e "b" são respectivamente 30 e 40mm, e o ângulo oposto ao cateto "b" vale 60°. Qual o valor do ângulo oposto ao cateto "a"?
Um abraço a todos.
Marcelo C. Delgado
-
Marcelo C Delgado
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sex Set 10, 2010 18:08
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Técnico Mecânico
- Andamento: cursando
por andrefahl » Seg Nov 08, 2010 17:36
Olá Marcelo,
Olha vc pode resolver usando a lei dos senos:

onde a e b são os lados respctivamente opostos ao ângulos A e B.
No caso do problem, ele quer saber o angulo oposto ao lado a e vc tem todos os outros dados.
Daí fica:

tenta resolve desse jeito e ve se ajuda...
acho q deve da certo =)
-
andrefahl
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Qui Out 28, 2010 18:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física - UNICAMP
- Andamento: cursando
por Marcelo C Delgado » Ter Nov 09, 2010 22:27
André,
Valeu pela ajuda.
A solução é realmente pela lei dos senos.
A resposta para esse problema é 40°30'19"
Um forte abraço.
Marcelo C. Delgado
-
Marcelo C Delgado
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sex Set 10, 2010 18:08
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Técnico Mecânico
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Plana - Triângulo] Triângulo Isós. e Bissetriz
por raimundoocjr » Qua Fev 22, 2012 09:41
- 3 Respostas
- 6397 Exibições
- Última mensagem por DanielFerreira

Sáb Fev 25, 2012 01:37
Geometria Plana
-
- Triangulo
por ginrj » Ter Abr 28, 2009 20:58
- 3 Respostas
- 3626 Exibições
- Última mensagem por ginrj

Sáb Mai 02, 2009 12:30
Geometria Plana
-
- Triângulo.
por Molina » Qua Mai 13, 2009 23:20
- 2 Respostas
- 1985 Exibições
- Última mensagem por Molina

Qui Mai 14, 2009 19:04
Geometria Plana
-
- Triângulo
por cristina » Seg Set 14, 2009 18:49
- 5 Respostas
- 2819 Exibições
- Última mensagem por Marcampucio

Ter Set 15, 2009 16:44
Trigonometria
-
- Triângulo
por Fogodc » Seg Abr 05, 2010 23:39
- 1 Respostas
- 1803 Exibições
- Última mensagem por Fogodc

Qua Abr 07, 2010 11:37
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.