• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como calcular este problema?

Como calcular este problema?

Mensagempor kurt » Qui Nov 04, 2010 19:50

Tenho uma chapa de papelão onde estão desenhados 18 circulos e 1 retangulo.
Em outra chapa estão desenhados 6 circulos e 15 retangulos.
Preciso determinar qual porção de papelão foi usada para 1 circulo e qual porção para 1 retangulo.
grato
kurt
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Nov 04, 2010 19:29
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eletrotecnica
Andamento: formado

Re: Como calcular este problema?

Mensagempor Elcioschin » Sex Nov 05, 2010 18:01

Não consegui entender o enunciado! Dá para explicar melhor?
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Como calcular este problema?

Mensagempor kurt » Sex Nov 05, 2010 19:00

Bem, vou tentar um exemplo com confecção de camisa.
Supondo que para formar uma camisa eu precise de corpo e manga.
Em uma area de tecido consegui colocar 18 mangas e no espaço restante,1 corpo .
Em outra area de tecido coloquei 15 corpos e no resto coube 6 mangas .
Agora preciso saber qual porção de tecido foi usado para manga e qual porção para corpo.
grato.
kurt
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Nov 04, 2010 19:29
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eletrotecnica
Andamento: formado

Re: Como calcular este problema?

Mensagempor 0 kelvin » Sex Nov 05, 2010 20:27

Isso me lembra aqueles desafios que a questão pede a área máxima de um quadrado inscrito num triângulo por exemplo.

Como não sei a área do papelão, só consigo fazer um "chute":

Digamos que sejam 18 círculos lado a lado. Chamando o raio de 1. A largura de 18 círculos lado a lado será de 36 unidades. A altura dessa fileira de círculos será de 2 unidades. Agora e o restante do papelão? Não sei quanto que sobra, só posso imaginar que 18 círculos alinhados ocupem uma fileira de um retângulo de área 36 x 2.

Seguindo esse mesmo raciocínio, colocaria 6 círculos lado a lado, mas a largura dessa fileira de círculos deverá se igual à largura da fileira de 18 círculos. Mas isso, levando em conta que o papelão tenha a mesma largura nos dois casos. 36 unidades por 6 círculos, raio = 3 e altura = 6.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Como calcular este problema?

Mensagempor Elcioschin » Sex Nov 05, 2010 22:20

kurt

Para poder ajudá-lo necessitamos de mais informações:

1) Dimensões do tecido
2) Dimensões do corpo e da manga
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.