• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Tronco de cone

Tronco de cone

Mensagempor Ananda » Ter Abr 01, 2008 19:38

Boa noite!

Eis o exercício:

Um cone circular reto de altura h e raio da base r é cortado por um plano paralelo à base. Calcular a altura do cone parcial assim determinado, de modo que a sua superfície lateral seja equivalente à superfície lateral do tronco de cone assim obtido.

Resposta: \frac{h\,\sqrt[]{2}}{2}

Bom, entendi que as áreas laterais são iguais, logo:

\Pi.g tronco(r+{r}_{1})=\Pi.{r}_{1}.g cone

E com a razão de semelhança, cheguei que:

h cone =\frac{{r}_{1}.h}{r}

Pensei em usar pitágoras, mas as aplicações ficariam imensas.

Pela resposta, vi que a razão entre o raio do cone obtido e do cone original será \frac{\sqrt[]{2}}{2}

Espero uma "luz" rs

Grata desde já pela atenção!
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando

Re: Tronco de cone

Mensagempor fabiosousa » Ter Abr 01, 2008 23:52

Olá Ananda!

Vi uma "luz" aqui, vou comentar...

Antes, para simplificar as referências pelo tamanho, apenas mudei as letras do enunciado para maiúsculas:
Um cone circular reto de altura H e raio da base R é cortado por um plano paralelo à base. Calcular a altura do cone parcial assim determinado, de modo que a sua superfície lateral seja equivalente à superfície lateral do tronco de cone assim obtido.
Resposta: \frac{H\,\sqrt{2}}{2}


Considere uma seção meridiana do cone grande.
Nela, destaquei os triângulos abaixo:
triangulos_semelhantes.jpg
triangulos_semelhantes.jpg (20.91 KiB) Exibido 12738 vezes


Note que eles são semelhantes pelo caso AA ângulo-ângulo (ângulo reto correspondente e ângulo comum no topo).
Daqui, temos que:

\frac{r}{R} = \frac{g}{G} = \frac{h}{H}

Vamos conversando...
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 870
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Tronco de cone

Mensagempor Ananda » Qua Abr 02, 2008 09:27

Bom dia!
Tinha enxergado isso depois rs
Vamos ver o que consigo hoje =D

Até mais!
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando

Re: Tronco de cone

Mensagempor Ananda » Qua Abr 02, 2008 10:11

Consegui! =D

Como a área lateral do cone obtido e a do tronco são iguais, a área lateral do cone obtido deve ser a metade da área do cone original.

Com isso:

\Pi.R.G=2.\Pi.r.g

Usando \frac{r}{R}=\frac{g}{G}=\frac{h}{H},

isolando G e R, depois substituindo na expressão inicial:

\frac{H.r}{h}.\frac{g.H}{h}=2.r.g

\frac{H^2}{h^2}=2

h=\frac{H\,\sqrt[]{2}}{2}

Grata, Fábio!

Um ótimo dia para ti!
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando

Re: Tronco de cone

Mensagempor fabiosousa » Qua Abr 02, 2008 12:56

Olá Ananda, bom dia!
Ótimo!

Apenas para expandir o conteúdo, vou comentar uma alternativa para esta sua prática e correta conclusão:

Como a área lateral do cone obtido e a do tronco são iguais, a área lateral do cone obtido deve ser a metade da área do cone original.

Com isso:
\pi.R.G=2.\pi.r.g



Primeiro, vamos mostrar como obter a área lateral do cone pequeno A_c.

Considere o cone aberto e planificado, conforme a figura:
cone_area_lateral.jpg
cone_area_lateral.jpg (31.45 KiB) Exibido 12676 vezes


Calcular a área lateral do cone pequeno é equivalente a calcular a área do setor circular A_c.
E 2\pi r é a medida do arco determinado pelo círculo da base de raio r.
E 2\pi R é a medida do arco determinado pelo círculo da base de raio R.

Fazendo uma regra de três relacionando área com arco:
\left\{
\begin{matrix}
\pi g^2 & \;\;\; & 2\pi g \\
A_c & \;\;\; & 2\pi r
\end{matrix}
\right.

A_c = \frac{\pi g^2 \cdot 2\pi r}{2\pi g} = \pi rg


A área do tronco A_t obtemos por diferença:

Sendo A_C a área do cone grande, a área que procuramos é

A_t = A_C - A_c

Para A_C fazemos um processo análogo ao anterior e obtemos

A_C = \pi RG

Então

A_t = \pi RG - \pi rg


Conforme o enunciado, queremos que A_c = A_t, logo

\pi rg = \pi RG - \pi rg

2\pi rg = \pi RG (chegamos àquela conclusão)

2rg = RG

2\frac{rg}{RG} = 1 (achei mais imediato utilizar aqui a conseqüência dos triângulos semelhantes)

2\frac{hh}{HH} = 1

2\frac{h^2}{H^2} = 1

2h^2 = H^2

h = \frac{H}{\sqrt{2}}

h = \frac{H\sqrt{2}}{2}


Entendendo este processo, não precisamos "alocar memória" para a "fórmula" da área lateral de um cone, pois podemos obtê-la rapidamente.

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 870
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Tronco de cone

Mensagempor Ananda » Qua Abr 02, 2008 13:48

Hm, entendi!
Mas é sempre bom saber da onde vem as fórmulas do que ficar decorando rs

Grata!
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}